Journal Home > Volume 15 , Issue 5

Nanomaterials are frequently employed in daily life goods, including health, textile, and food industry. A comprehensive picture is lacking on the role of the capping agents, added ligand molecules, in case of nanoparticle reactions and degradation in aqueous solutions, like surface waters or biofluids. Here, we aim to elucidate the capping agent influence on nanoparticle reactivity probing two commonly employed capping agents citrate and polyvinylpyrrolidone (PVP). Their influence on silver nanoparticle (AgNP) transformation is studied, which is particularly important due to its application as an antimicrobial agent. We induce oxidation and reduction processes of AgNPs in halide solutions and we monitor the associated transformations of particles and capping agents by spectro-electrochemical surface-enhanced Raman spectroscopy (SERS). Raman bands of the capping agents are used here to track chemical changes of the nanoparticles under operando conditions. The sparingly soluble and non-plasmon active silver salts (AgBr and AgCl) are formed under potential bias. In addition, we spectroscopically observe plasmon-mediated structural changes of citrate to cis- or trans-aconitate, while PVP is unaltered. The different behavior of the capping agents implies a change in the physical properties on the surface of AgNPs, in particular with respect to the surface accessibility. Moreover, we showcase that reactions of the capping agents induced by different external stimuli, such as applied bias or laser irradiation, can be assessed. Our results demonstrate how SERS of capping agents can be exploited to operando track nanoparticle conversions in liquid media. This approach is envisaged to provide a more comprehensive understanding of nanoparticle fates in complex liquid environments and varied redox conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Operando electrochemical SERS monitors nanoparticle reactions by capping agent fingerprints

Show Author's information Kevin Wonner1,§Steffen Murke2,§Serena R. Alfarano2Pouya Hosseini1Martina Havenith2( )Kristina Tschulik1( )
Chair of Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
Chair of Physical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany

§ Kevin Wonner and Steffen Murke contributed equally to this work.

Abstract

Nanomaterials are frequently employed in daily life goods, including health, textile, and food industry. A comprehensive picture is lacking on the role of the capping agents, added ligand molecules, in case of nanoparticle reactions and degradation in aqueous solutions, like surface waters or biofluids. Here, we aim to elucidate the capping agent influence on nanoparticle reactivity probing two commonly employed capping agents citrate and polyvinylpyrrolidone (PVP). Their influence on silver nanoparticle (AgNP) transformation is studied, which is particularly important due to its application as an antimicrobial agent. We induce oxidation and reduction processes of AgNPs in halide solutions and we monitor the associated transformations of particles and capping agents by spectro-electrochemical surface-enhanced Raman spectroscopy (SERS). Raman bands of the capping agents are used here to track chemical changes of the nanoparticles under operando conditions. The sparingly soluble and non-plasmon active silver salts (AgBr and AgCl) are formed under potential bias. In addition, we spectroscopically observe plasmon-mediated structural changes of citrate to cis- or trans-aconitate, while PVP is unaltered. The different behavior of the capping agents implies a change in the physical properties on the surface of AgNPs, in particular with respect to the surface accessibility. Moreover, we showcase that reactions of the capping agents induced by different external stimuli, such as applied bias or laser irradiation, can be assessed. Our results demonstrate how SERS of capping agents can be exploited to operando track nanoparticle conversions in liquid media. This approach is envisaged to provide a more comprehensive understanding of nanoparticle fates in complex liquid environments and varied redox conditions.

Keywords: silver nanoparticle, capping agent, electrochemical surface-enhanced Raman spectroscopy, nanoparticle reaction

References(96)

1

McClements, D. J.; Xiao, H. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. npj Sci. Food 2017, 1, 6.

2

Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem., Int. Ed. 2013, 52, 1636–1653.

3

Wong, K. K. Y.; Cheung, S. O. F.; Huang, L. M.; Niu, J.; Tao, C.; Ho, C. M.; Che, C. M.; Tam, P. K. H. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem 2009, 4, 1129–1135.

4

Hofmann-Amtenbrink, M.; Grainger, D. W.; Hofmann, H. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine 2015, 11, 1689–1694.

5

Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 2017, 16, 834–840.

6

Shahidi, S. Magnetic nanoparticles application in the textile industry—A review. J. Ind. Text. 2019, 50, 970–989.

7

Cota-Arriola, O.; Cortez-Rocha, M. O.; Burgos-Hernández, A.; Ezquerra-Brauer, J. M. Plascencia-Jatomea, M. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: Development of new strategies for microbial control in agriculture. J. Sci. Food Agric. 2013, 93, 1525–1536.

8
Prasad, R.; Kumar, V.; Kumar, M.; Wang, S. Q. Fungal nanobionics: Principles and applications Springer: Singapore, 2018.
9

Peng, K. Q.; Wang, X.; Wu, X. L.; Lee, S. T. Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett. 2009, 9, 3704–3709.

10

Dai, L. M.; Chang, D. W.; Baek, J. B.; Lu, W. Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1130–1166.

11

Zeng, S. W.; Yong, K. T.; Roy, I.; Dinh, X. Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011, 6, 491–506.

12

Linnemann, J.; Kanokkanchana, K.; Tschulik, K. Design strategies for electrocatalysts from an electrochemist’s perspective. ACS Catal. 2021, 11, 5318–5346.

13

Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L. M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chem. Soc. Rev. 2012, 41, 5577–5587.

14

Raimondi, F.; Scherer, G. G.; Kötz, R.; Wokaun, A. Nanoparticles in energy technology: Examples from electrochemistry and catalysis. Angew. Chem., Int. Ed. 2005, 44, 2190–2209.

15

Zhu, C. Z.; Dong, S. J. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 2013, 5, 1753–1767.

16

El Arrassi, A.; Liu, Z. B.; Evers, M. V.; Blanc, N.; Bendt, G.; Saddeler, S.; Tetzlaff, D.; Pohl, D.; Damm, C.; Schulz, S. et al. Intrinsic activity of oxygen evolution catalysts probed at single CoFe2O4 nanoparticles. J. Am. Chem. Soc. 2019, 141, 9197–9201.

17

Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 2011, 40, 4167–4185.

18

Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.

19
Alkire, R. C.; Kolb, D. M.; Lipkowski, J. Electrocatalysis: Theoretical Foundations and Model Experiments; Wiley-VCH: Weinheim, 2013.
20
Yang, T.-H.; Ahn, J.; Shi, S.; Qin, D. Understanding the role of poly(vinylpyrrolidone) in stabilizing and capping colloidal silver nanocrystals. ACS Nano, in press, https://doi.org/10.1021/acsnano.1c01668.
21

Wonner, K.; Evers, M. V.; Tschulik, K. The electrochemical dissolution of single silver nanoparticles enlightened by hyperspectral dark-field microscopy. Electrochim. Acta 2019, 301, 458–464.

22

Wonner, K.; Evers, M. V.; Tschulik, K. Simultaneous opto- and spectro-electrochemistry: Reactions of individual nanoparticles uncovered by dark-field microscopy. J. Am. Chem. Soc. 2018, 140, 12658–12661.

23

Wonner, K.; Rurainsky, C.; Tschulik, K. Operando studies of the electrochemical dissolution of silver nanoparticles in nitrate solutions observed with hyperspectral dark-field microscopy. Front. Chem. 2020, 7, 912.

24

Batchelor-McAuley, C.; Martinez-Marrades, A.; Tschulik, K.; Patel, A. N.; Combellas, C.; Kanoufi, F.; Tessier, G.; Compton, R. G. Simultaneous electrochemical and 3D optical imaging of silver nanoparticle oxidation. Chem. Phys. Lett. 2014, 597, 20–25.

25

Lemineur, J. F.; Noël, J. M.; Courty, A.; Ausserré, D.; Combellas, C.; Kanoufi, F. In situ optical monitoring of the electrochemical conversion of dielectric nanoparticles: From multistep charge injection to nanoparticle motion. J. Am. Chem. Soc. 2020, 142, 7937–7946.

26

Brasiliense, V.; Clausmeyer, J.; Berto, P.; Tessier, G.; Combellas, C.; Schuhmann, W.; Kanoufi, F. Monitoring cobalt-oxide single particle electrochemistry with subdiffraction accuracy. Anal. Chem. 2018, 90, 7341–7348.

27

Doneux, T.; Bouffier, L.; Goudeau, B.; Arbault, S. Coupling electrochemistry with fluorescence confocal microscopy to investigate electrochemical reactivity: A case study with the resazurin-resorufin fluorogenic couple. Anal. Chem. 2016, 88, 6292–6300.

28

Hao, R.; Fan, Y. S.; Zhang, B. Imaging dynamic collision and oxidation of single silver nanoparticles at the electrode/solution interface. J. Am. Chem. Soc. 2017, 139, 12274–12282.

29

Wilson, A. J.; Marchuk, K.; Willets, K. A. Imaging electrogenerated chemiluminescence at single gold nanowire electrodes. Nano Lett. 2015, 15, 6110–6115.

30
Bard, A. J. Electrogenerated Chemiluminescence; Marcel Dekker: New York, 2004.
31

Forster, R. J.; Bertoncello, P.; Keyes, T. E. Electrogenerated chemiluminescence. Annu. Rev. Anal. Chem. 2009, 2, 359–385.

32

Zybin, A.; Kuritsyn, Y. A.; Gurevich, E. L.; Temchura, V. V.; Überla, K.; Niemax, K. Real-time detection of single immobilized nanoparticles by surface Plasmon resonance imaging. Plasmonics 2010, 5, 31–35.

33

Fang, Y. M.; Wang, W.; Wo, X.; Luo, Y. S.; Yin, S. W.; Wang, Y. X.; Shan, X. N.; Tao, N. J. Plasmonic imaging of electrochemical oxidation of single nanoparticles. J. Am. Chem. Soc. 2014, 136, 12584–12587.

34

Wang, Y. X.; Shan, X. N.; Wang, H.; Wang, S. P.; Tao, N. J. Plasmonic imaging of surface electrochemical reactions of single gold nanowires. J. Am. Chem. Soc. 2017, 139, 1376–1379.

35

Solla-Gullón, J.; Gómez, R.; Aldaz, A.; Pérez, J. M. A combination of SERS and electrochemistry in Pt nanoparticle electrocatalysis: Promotion of formic acid oxidation by ethylidyne. Electrochem. Commun. 2008, 10, 319–322.

36

Plieth, W.; Dietz, H.; Anders, A.; Sandmann, G.; Meixner, A.; Weber, M.; Kneppe, H. Electrochemical preparation of silver and gold nanoparticles: Characterization by confocal and surface enhanced Raman microscopy. Surf. Sci. 2005, 597, 119–126.

37

Tian, Z. Q.; Ren, B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 2004, 55, 197–229.

38

Di Martino, G.; Turek, V. A.; Lombardi, A.; Szabó, I.; De Nijs, B.; Kuhn, A.; Rosta, E.; Baumberg, J. J. Tracking nanoelectrochemistry using individual plasmonic nanocavities. Nano Lett. 2017, 17, 4840–4845.

39

Willets, K. A. Probing nanoscale interfaces with electrochemical surface-enhanced Raman scattering. Curr. Opin. Electrochem. 2019, 13, 18–24.

40

Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

41

Hwang, H.; Kim, S. H.; Yang, S. M. Microfluidic fabrication of SERS-active microspheres for molecular detection. Lab Chip 2011, 11, 87–92.

42

Tan, R. Z.; Agarwal, A.; Balasubramanian, N.; Kwong, D. L.; Jiang, Y.; Widjaja, E.; Garland, M. 3D arrays of SERS substrate for ultrasensitive molecular detection. Sens. Actuator A Phys. 2007, 139, 36–41.

43

He, R. X.; Liang, R.; Peng, P.; Zhou, Y. N. Effect of the size of silver nanoparticles on SERS signal enhancement. J. Nanopart. Res. 2017, 19, 267.

44

Abdelsalam, M.; Bartlett, P. N.; Russell, A. E.; Baumberg, J. J.; Calvo, E. J.; Tognalli, N. G.; Fainstein, A. Quantitative electrochemical SERS of Flavin at a structured silver surface. Langmuir 2008, 24, 7018–7023.

45

Abdelsalam, M. E.; Bartlett, P. N.; Baumberg, J. J.; Cintra, S.; Kelf, T. A.; Russell, A. E. Electrochemical SERS at a structured gold surface. Electrochem. Commun. 2005, 7, 740–744.

46

Dick, L. A.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 2002, 106, 853–860.

47

Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.

48

Schlücker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem., Int. Ed. 2014, 53, 4756–4795.

49

Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iatì, M. A. Surface Plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017, 29, 203002.

50

Cao, J.; Sun, T.; Grattan, K. T. V. Gold nanorod-based localized surface Plasmon resonance biosensors: A review. Sens. Actuators B Chem. 2014, 195, 332–351.

51

Mayer, K. M.; Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857.

52

Wilson, A. J.; Willets, K. A. Molecular plasmonics. Annu. Rev. Anal. Chem. 2016, 9, 27–43.

53

Jing, C.; Rawson, F. J.; Zhou, H.; Shi, X.; Li, W. H.; Li, D. W.; Long, Y. T. New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Anal. Chem. 2014, 86, 5513–5518.

54

Ma, Y. X.; Highsmith, A. L.; Hill, C. M.; Pan, S. L. Dark-field scattering spectroelectrochemistry analysis of hydrazine oxidation at au nanoparticle-modified transparent electrodes. J. Phys. Chem. C 2018, 122, 18603–18614.

55

Cheng, W.; Compton, R. G. Electrochemical detection of nanoparticles by “nano-impact” methods. TrAC Trends Anal. Chem. 2014, 58, 79–89.

56

Sundaresan, V.; Monaghan, J. W.; Willets, K. A. Visualizing the effect of partial oxide formation on single silver nanoparticle electrodissolution. J. Phys. Chem. C 2018, 122, 3138–3145.

57

Little, C. A.; Batchelor-McAuley, C.; Ngamchuea, K.; Lin, C. H.; Young, N. P.; Compton, R. G. Coupled optical and electrochemical probing of silver nanoparticle destruction in a reaction layer. ChemistryOpen 2018, 7, 370–380.

58

El-Nour, K. M. M. A.; Eftaiha, A.; Al-Warthan, A.; Ammar, R. A. A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010, 3, 135–140.

59

Tschulik, K.; Batchelor-McAuley, C.; Toh, H. S.; Stuart, E. J. E.; Compton, R. G. Electrochemical studies of silver nanoparticles: A guide for experimentalists and a perspective. Phys. Chem. Chem. Phys. 2014, 16, 616–623.

60

Zhang, F.; Edwards, M. A.; Hao, R.; White, H. S.; Zhang, B. Collision and oxidation of silver nanoparticles on a gold nanoband electrode. J. Phys. Chem. C 2017, 121, 23564–23573.

61

Ustarroz, J.; Kang, M.; Bullions, E.; Unwin, P. R. Impact and oxidation of single silver nanoparticles at electrode surfaces: One shot versus multiple events. Chem. Sci. 2017, 8, 1841–1853.

62

Oja, S. M.; Robinson, D. A.; Vitti, N. J.; Edwards, M. A.; Liu, Y. W.; White, H. S.; Zhang, B. Observation of multipeak collision behavior during the electro-oxidation of single Ag nanoparticles. J. Am. Chem. Soc. 2017, 139, 708–718.

63

Robinson, D. A.; Liu, Y. W.; Edwards, M. A.; Vitti, N. J.; Oja, S. M.; Zhang, B.; White, H. S. Collision dynamics during the electrooxidation of individual silver nanoparticles. J. Am. Chem. Soc. 2017, 139, 16923–16931.

64

Salemmilani, R.; Mirsafavi, R. Y.; Fountain, A. W.; Moskovits, M.; Meinhart, C. D. Quantitative surface-enhanced Raman spectroscopy chemical analysis using citrate as an in situ calibrant. Analyst 2019, 144, 1818–1824.

65

Awada, C.; Traboulsi, H. Effect of pH and nanoparticle capping agents on Cr (III) monitoring in water: A kinetic way to control the parameters of ultrasensitive environmental detectors. Micromachines 2020, 11, 1045.

66

Smith, J. G.; Jain, P. K. The ligand shell as an energy barrier in surface reactions on transition metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 6765–6773.

67

Gorbachevskii, M. V.; Kopitsyn, D. S.; Kotelev, M. S.; Ivanov, E. V.; Vinokurov, V. A.; Novikov, A. A. Amplification of surface-enhanced Raman scattering by the oxidation of capping agents on gold nanoparticles. RSC Adv. 2018, 8, 19051–19057.

68

Brasiliense, V.; Patel, A. N.; Martinez-Marrades, A.; Shi, J.; Chen, Y.; Combellas, C.; Tessier, G.; Kanoufi, F. Correlated electrochemical and optical detection reveals the chemical reactivity of individual silver nanoparticles. J. Am. Chem. Soc. 2016, 138, 3478–3483.

69

Zaleski, S.; Cardinal, M. F.; Klingsporn, J. M.; Van Duyne, R. P. Observing single, heterogeneous, one-electron transfer reactions. J. Phys. Chem. C 2015, 119, 28226–28234.

70

Kong, N.; Guo, J.; Chang, S.; Pan, J.; Wang, J. M.; Zhou, J. H.; Liu, J.; Zhou, H.; Pfeffer, F. M.; Liu, J. et al. Direct observation of amide bond formation in a plasmonic nanocavity triggered by single nanoparticle collisions. J. Am. Chem. Soc. 2021, 143, 9781–9790.

71

Akhil, K.; Jayakumar, J.; Gayathri, G.; Khan, S. S. Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles. J. Photochem. Photobiol. B Biol. 2016, 160, 32–42.

72

Campisi, S.; Schiavoni, M.; Chan-Thaw, C.; Villa, A. Untangling the role of the capping agent in nanocatalysis: Recent advances and perspectives. Catalysts 2016, 6, 185.

73

Suherman, A. L.; Zampardi, G.; Amin, H. M. A.; Young, N. P.; Compton, R. G. Tannic acid capped gold nanoparticles: Capping agent chemistry controls the redox activity. Phys. Chem. Chem. Phys. 2019, 21, 4444–4451.

74

Niu, Z. C; Li, Y. D. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 2014, 26, 72–83.

75

Byers, C. P.; Hoener, B. S.; Chang, W. S.; Link, S.; Landes, C. F. Single-particle Plasmon voltammetry (spPV) for detecting anion adsorption. Nano Lett. 2016, 16, 2314–2321.

76

Tanner, E. E. L.; Sokolov, S. V.; Young, N. P.; Batchelor-McAuley, C.; Compton, R. G. Fluorescence electrochemical microscopy: Capping agent effects with ethidium bromide/DNA capped silver nanoparticles. Angew. Chem. 2017, 129, 12925–12928.

77

Tanner, E. E. L.; Tschulik, K.; Tahany, R.; Jurkschat, K.; Batchelor-McAuley, C.; Compton, R. G. Nanoparticle capping agent dynamics and electron transfer: Polymer-gated oxidation of silver nanoparticles. J. Phys. Chem. C 2015, 119, 18808–18815.

78

Toh, H. S.; Jurkschat, K.; Compton, R. G. The influence of the capping agent on the oxidation of silver nanoparticles: Nano-impacts versus stripping voltammetry. Chem.—Eur. J. 2015, 21, 2998–3004.

79

Han, Y.; Lupitskyy, R.; Chou, T. M.; Stafford, C. M.; Du, H.; Sukhishvili, S. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: A quantitative correlation. Anal. Chem. 2011, 83, 5873–5880.

80

Saw, E. N.; Blanc, N.; Kanokkanchana, K.; Tschulik, K. Time-resolved impact electrochemistry—A new method to determine diffusion coefficients of ions in solution. Electrochim. Acta 2018, 282, 317–323.

81

Takeuchi, Y.; Fujita, T.; Takeyasu, N. Plasmon-mediated chemical transformation from alkane to alkene on a silver nanoparticle array under 532 nm excitation. Phys. Chem. Chem. Phys. 2019, 21, 7502–7507.

82

Levard, C.; Mitra, S.; Yang, T.; Jew, A. D.; Badireddy, A. R.; Lowry, G. V.; Brown, G. E. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, 5738–5745.

83

Toh, H. S.; Batchelor-McAuley, C.; Tschulik, K.; Compton, R. G. Electrochemical detection of chloride levels in sweat using silver nanoparticles: A basis for the preliminary screening for cystic fibrosis. Analyst 2013, 138, 4292–4297.

84

Naja, G.; Bouvrette, P.; Hrapovic, S.; Luong, J. H. T. Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst 2007, 132, 679–686.

85
Revie, R. W. Uhlig's Corrosion Handbook, 3rd ed.; Wiley: Hoboken, 2011.
86

Kolwas, K. Decay dynamics of localized surface plasmons: Damping of coherences and populations of the oscillatory Plasmon modes. Plasmonics 2019, 14, 1629–1637.

87

Moon, S. W.; Tsalu, P. V.; Ha, J. W. Single particle study: Size and chemical effects on Plasmon damping at the interface between adsorbate and anisotropic gold nanorods. Phys. Chem. Chem. Phys. 2018, 20, 22197–22202.

88

Tsalu, P. V.; Kim, G. W.; Hong, J. W.; Ha, J. W. Homogeneous localized surface Plasmon resonance inflection points for enhanced sensitivity and tracking Plasmon damping in single gold bipyramids. Nanoscale 2018, 10, 12554–12563.

89

Dondapati, S. K.; Ludemann, M.; Müller, R.; Schwieger, S.; Schwemer, A.; Händel, B.; Kwiatkowski, D.; Djiango, M.; Runge, E.; Klar, T. A. Voltage-induced adsorbate damping of single gold nanorod plasmons in aqueous solution. Nano Lett. 2012, 12, 1247–1252.

90

Park, H.; Lee, S. B.; Kim, M. S.; Kim, K. Effects on silver-surface-enhanced Raman spectroscopy by competitive adsorption of hydroxide and halide ions. Chem. Phys. 1992, 161, 265–272.

91

Bartlett, T. R.; Sokolov, S. V.; Compton, R. G. Electrochemical nanoparticle sizing via nano-impacts: How large a nanoparticle can be measured? ChemistryOpen 2015, 4, 600–605.

92
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, 2001.
93

Nernst, W. Die elektromotorische wirksamkeit der Jonen. Z. Phys. Chem. 1889, 4U, 129–181.

94

Chen, C. P.; Liu, W. F.; Tian, S. P.; Hong, T. T. Novel surface-enhanced Raman spectroscopy techniques for DNA, protein and drug detection. Sensors 2019, 19, 1712.

95

Baia, M.; Toderas, F.; Baia, L.; Popp, J.; Astilean, S. Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles. Chem. Phys. Lett. 2006, 422, 127–132.

96

Jahangirian, H.; Kalantari, K.; Izadiyan, Z.; Rafiee-Moghaddam, R.; Shameli, K.; Webster, T. J. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int. J. Nanomedicine 2019, 14, 1633–1657.

File
12274_2021_3999_MOESM1_ESM.pdf (5.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 July 2021
Revised: 04 October 2021
Accepted: 24 October 2021
Published: 27 January 2022
Issue date: May 2022

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

K. W. acknowledges the German Chemical Industry Fund (FCI Kekule Stipendium). This work was supported by the Research Training group “Confinement-controlled Chemistry” funded by the Deutsche Forschungsgemeinschaft (DFG) (No. GRK2376/331085229). K. T. thanks the Ministry of Innovation, Science and Research of North Rhine-Westphalia for funds (NRW Rückkehrerprogramm). This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-EXC 2033–90677874-RESOLV and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MITICAT; grant agreement No. 949724). The authors thank Dr. J. Deichmöller for initial help and fruitful discussion.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return