Journal Home > Volume 15 , Issue 5

Oxygen deficiency is a major obstacle to hypoxic-related cancer theranostics, and developing the oxygen production nanoplatforms received the widespread attention. However, it is remaining a challenge to structure a nanoplatform with hypoxia alleviation effect and imaging-guided cancer radiotherapy. Herein, we present a novel theranostics nanoplatform (Au NPs/UCNPs/WO3@C) comprising of tungsten trioxide (WO3) that loaded gold nanoparticles (Au NPs) and up-conversion nanoparticles (UCNPs) for improved photoacoustic (PA) imaging performance in the second near infrared window (NIR-II, 900–1,700 nm). Au NPs/UCNPs/WO3@C exhibited superior oxygen-generation effect and doxorubicin loading capacity, thus serving as an efficient radiosensitizer for radio-chemo anti-cancer therapy. Importantly, the accumulated Au NPs/UCNPs/WO3@C in the tumor region led to the increased NIR-II PA imaging signal and the blood oxygen saturation signal, which could enhance radiation sensitivity and accurately guiding cancer radiotherapy to reduce side effects on normal tissues. This study with proof-of-concept confirmed the multifaceted characteristics and encouraging potential of biomimetic Au NPs/UCNPs/WO3@C for NIR-II PA imaging-guided tumor therapeutics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mesoporous radiosensitized nanoprobe for enhanced NIR-II photoacoustic imaging-guided accurate radio-chemotherapy

Show Author's information Tao Chen1Lichao Su1Lisen Lin1Xiaoguang Ge1Feicheng Bai1Meng Niu1Chenlu Wang1Jibin Song1Shaolei Guo2( )Huanghao Yang1( )
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China
Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China

Abstract

Oxygen deficiency is a major obstacle to hypoxic-related cancer theranostics, and developing the oxygen production nanoplatforms received the widespread attention. However, it is remaining a challenge to structure a nanoplatform with hypoxia alleviation effect and imaging-guided cancer radiotherapy. Herein, we present a novel theranostics nanoplatform (Au NPs/UCNPs/WO3@C) comprising of tungsten trioxide (WO3) that loaded gold nanoparticles (Au NPs) and up-conversion nanoparticles (UCNPs) for improved photoacoustic (PA) imaging performance in the second near infrared window (NIR-II, 900–1,700 nm). Au NPs/UCNPs/WO3@C exhibited superior oxygen-generation effect and doxorubicin loading capacity, thus serving as an efficient radiosensitizer for radio-chemo anti-cancer therapy. Importantly, the accumulated Au NPs/UCNPs/WO3@C in the tumor region led to the increased NIR-II PA imaging signal and the blood oxygen saturation signal, which could enhance radiation sensitivity and accurately guiding cancer radiotherapy to reduce side effects on normal tissues. This study with proof-of-concept confirmed the multifaceted characteristics and encouraging potential of biomimetic Au NPs/UCNPs/WO3@C for NIR-II PA imaging-guided tumor therapeutics.

Keywords: photocatalysis, tumor hypoxia, photoacoustic imaging, radiotherapy, second near infrared window (NIR-II)

References(51)

1

Kaneko, S.; Molina, E. S.; Ewelt, C.; Warneke, N.; Stummer, W. Fluorescence-based measurement of real-time kinetics of protoporphyrin IX after 5-aminolevulinic acid administration in human in situ malignant gliomas. Neurosurgery 2019, 85, E739–E746.

2

Van Meir, E. G.; Hadjipanayis, C. G.; Norden, A. D.; Shu, H. K.; Wen, P. Y.; Olson, J. J. Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma. CA. Cancer J. Clin. 2010, 60, 166–193.

3

Ye, T. Y.; Lai, Y. Q.; Wang, Z. Y.; Zhang, X. G.; Meng, G. N.; Zhou, L. P.; Zhang, Y. F.; Zhou, Z.; Deng, J. L.; Wang, M. et al. Precise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near-infrared neuromodulation. Adv. Funct. Mater. 2019, 29, 1902128.

4

Im, S.; Lee, J.; Park, D.; Park, A.; Kim, Y. M.; Kim, W. J. Hypoxia-triggered transforming immunomodulator for cancer immunotherapy via photodynamically enhanced antigen presentation of dendritic cell. ACS Nano 2019, 13, 476–488.

5

Jia, Q. Y.; Ge, J. C.; Liu, W. M.; Zheng, X. L.; Chen, S. Q.; Wen, Y. M.; Zhang, H. Y.; Wang, P. F. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 2018, 30, 1706090.

6

Lan, G. X.; Ni, K. Y.; Xu, Z. W.; Veroneau, S. S.; Song, Y.; Lin, W. B. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 2018, 140, 5670–5673.

7

An, J.; Hu, Y. G.; Li, C.; Hou, X. L.; Cheng, K.; Zhang, B.; Zhang, R. Y.; Li, D. Y.; Liu, S. J.; Liu, B. et al. A pH/ultrasound dual-response biomimetic nanoplatform for nitric oxide gas-sonodynamic combined therapy and repeated ultrasound for relieving hypoxia. Biomaterials 2020, 230, 119636.

8

Zhang, S. C.; Li, Q. Z.; Yang, N.; Shi, Y. H.; Ge, W.; Wang, W. J.; Huang, W. J.; Song, X. J.; Dong X. C. Phase-change materials based nanoparticles for controlled hypoxia modulation and enhanced phototherapy. Adv. Funct. Mater. 2019, 29, 1906805.

9

Herter-Sprie, G. S.; Korideck, H.; Christensen, C. L.; Herter, J. M.; Rhee, K.; Berbeco, R. I.; Bennett, D. G.; Akbay, E. A.; Kozono, D.; Mak, R. H. et al. Image-guided radiotherapy platform using single nodule conditional lung cancer mouse models. Nat. Commun. 2014, 5, 5870.

10

Zhang, C.; Zhao, K. L.; Bu, W. B.; Ni, D. L.; Liu, Y. Y.; Feng, J. W.; Shi, J. L. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angew. Chem., Int. Ed. 2015, 54, 1770–1774.

11

Wang, Z.; Shao, D.; Chang, Z. M.; Lu, M. M.; Wang, Y. S.; Yue, J.; Yang, D.; Li, M. Q.; Xu, Q. B.; Dong, W. F. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano 2017, 11, 12732–12741.

12

He, Z. M.; Huang, X. L.; Wang, C.; Li, X. L.; Liu, Y. J.; Zhou, Z. J.; Wang, S.; Zhang, F. W.; Wang, Z. T.; Jacobson, O. et al. A catalase-like metal-organic framework nanohybrid for O2-evolving synergistic chemoradiotherapy. Angew. Chem., Int. Ed. 2019, 131, 8752–8756.

13

Li, Y. Y.; Qi, Y. C.; Zhang, H. B.; Xia, Z. M.; Xie, T. T.; Li, W. L.; Zhong, D. N.; Zhu, H. L.; Zhou, M. Gram-scale synthesis of highly biocompatible and intravenous injectable hafnium oxide nanocrystal with enhanced radiotherapy efficacy for cancer theranostic. Biomaterials 2020, 226, 119538.

14

Ma, T. C.; Liu, Y. D.; Wu, Q.; Luo, L. F.; Cui, Y. L.; Wang, X. H.; Chen, X. W.; Tan, L. F.; Meng, X. W. Quercetin-modified metal-organic frameworks for dual sensitization of radiotherapy in tumor tissues by inhibiting the carbonic anhydrase IX. ACS Nano 2019, 13, 4209–4219.

15

Kaur, P.; Hurwitz, M. D.; Krishnan, S.; Asea, A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers 2011, 3, 3799–3823.

16

Kaanders, J. H. A. M.; Pop, L. A. M.; Marres, H. A. M.; Liefers, J.; van den Hoogen, F. J. A.; van Daal, W. A. J.; van den Kogel, A. J. Accelerated radiotherapy with carbogen and nicotinamide (ARCON) for laryngeal cancer. Radiother. Oncol. 1998, 48, 115–122.

17

Swift, M. N.; Taketa, S. T.; Bond, V. P. Regionally fractionated x-irradiation equivalent in dose to total-body exposure. Radiat. Res. 1954, 1, 241–252.

18

Liu, Y. Y.; Liu, Y.; Bu, W. B.; Xiao, Q. F.; Sun, Y.; Zhao, K. L.; Fan, W. P.; Liu, J. N.; Shi, J. L. Radiation-/hypoxia-induced solid tumor metastasis and regrowth inhibited by hypoxia-specific upconversion nanoradiosensitizer. Biomaterials 2015, 49, 1–8.

19

Chen, Q.; Chen, J. W.; Yang, Z. J.; Xu, J.; Xu, L. G.; Liang, C.; Han, X.; Liu, Z. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 2019, 31, 1802228.

20

Yi, X.; Chen, L.; Chen, J.; Maiti, D.; Chai, Z. F.; Liu, Z.; Yang, K. Biomimetic copper sulfide for chemo-radiotherapy: Enhanced uptake and reduced efflux of nanoparticles for tumor cells under ionizing radiation. Adv. Funct. Mater. 2018, 28, 1705161.

21

Dong, Z. L.; Feng, L. Z.; Chao, Y.; Hao, Y.; Chen, M. H.; Gong, F.; Han, X.; Zhang, R.; Cheng, L.; Liu, Z. Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett. 2019, 19, 805–815.

22

Hua, L.; Wang, Z.; Zhao, L.; Mao, H. L.; Wang, G. H.; Zhang, K. R.; Liu, X. J.; Wu, D. M.; Zheng, Y. L.; Lu, J. et al. Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for glioma chemo- and radiotherapy. Theranostics 2018, 8, 5088–5105.

23

Sun, W. J.; Shi, T. H.; Luo, L.; Chen, X. M.; Lv, P.; Lv, Y.; Zhuang, Y. X.; Zhu, J. J.; Liu, G.; Chen, X. Y. et al. Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy. Adv. Mater. 2019, 31, 1808024.

24

Cheng, K.; Sano, M.; Jenkins, C. H.; Zhang, G. L.; Vernekohl, D.; Zhao, W.; Wei, C. X.; Zhang, Y.; Zhang, Z.; Liu, Y. J. et al. Synergistically enhancing the therapeutic effect of radiation therapy with radiation activatable and reactive oxygen species-releasing nanostructures. ACS Nano 2018, 12, 4946–4958.

25

Fan, W. P.; Lu, N.; Shen, Z. Y.; Tang, W.; Shen, B.; Cui, Z. W.; Shan, L. L.; Yang, Z.; Wang, Z. T.; Jacobson, O. et al. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nat. Commun. 2019, 10, 1241.

26

Lu, K. D.; He, C. B.; Guo, N. N.; Chan, C.; Ni, K. Y.; Lan, G. X.; Tang, H. D.; Pelizzari, C.; Fu, Y. X.; Spiotto, M. T. et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600–610.

27

Zhong, X. Y.; Wang, X. W.; Zhan, G. T.; Tang, Y. A.; Yao, Y. Z.; Dong, Z. L.; Hou, L. Q.; Zhao, H.; Zeng, S. J.; Hu, J. et al. NaCeF4: Gd, Tb scintillator as an X-ray responsive photosensitizer for multimodal imaging-guided synchronous radio/radiodynamic therapy. Nano Lett. 2019, 19, 8234–8244.

28

Deng, H. Z.; Lin, L. S.; Wang, S.; Yu, G. C.; Zhou, Z. J.; Liu, Y. J.; Niu, G.; Song, J. B.; Chen, X. Y. X-ray-controlled bilayer permeability of bionic nanocapsules stabilized by nucleobase pairing interactions for pulsatile drug delivery. Adv. Mater. 2019, 31, 1903443.

29

Lu, N.; Fan, W. P.; Yi, X.; Wang, S.; Wang, Z. T.; Tian, R.; Jacobson, O.; Liu, Y. J.; Yung, B. C.; Zhang, G. F. et al. Biodegradable hollow mesoporous organosilica nanotheranostics for mild hyperthermia-induced bubble-enhanced oxygen-sensitized radiotherapy. ACS Nano 2018, 12, 1580–1591.

30

Song, J. B.; Yang, X. Y.; Jacobson, O.; Lin, L. S.; Huang, P.; Niu, G.; Ma, Q. J.; Chen, X. Y. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 2015, 9, 9199–9209.

31

Yang, Z.; Song, J. B.; Dai, Y. L.; Chen, J. Y.; Wang, F.; Lin, L. S.; Liu, Y. J.; Zhang, F. W.; Yu, G. C.; Zhou, Z. J. et al. Self-assembly of semiconducting-plasmonic gold nanoparticles with enhanced optical property for photoacoustic imaging and photothermal therapy. Theranostics 2017, 7, 2177–2185.

32

Tang, W.; Yang, Z.; Wang, S.; Wang, Z. T.; Song, J. B.; Yu, G. C.; Fan, W. P.; Dai, Y. L.; Wang, J. J.; Shan, L. L. et al. Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy. ACS Nano 2018, 12, 2610–2622.

33

Zhang, Z.; Fang, X. F.; Liu, Z. H.; Liu, H. C.; Chen, D. D.; He, S. Q.; Zheng, J.; Yang, B.; Qin, W. P.; Zhang, X. J. et al. Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull mouse-brain imaging. Angew. Chem., Int. Ed. 2019, 59, 3691–3698.

34

Sun, T. T.; Han, J. F.; Liu, S.; Wang, X.; Wang, Z. Y.; Xie, Z. G. Tailor-made semiconducting polymers for second near-infrared photothermal therapy of orthotopic liver cancer. ACS Nano 2019, 13, 7345–7354.

35

Tang, Y. F.; Li, Y. Y.; Lu, X. M.; Hu, X. M.; Zhao, H.; Hu, W. B.; Lu, F.; Fan, Q. L.; Huang, W. Bio-erasable intermolecular donor-acceptor interaction of organic semiconducting nanoprobes for activatable NIR-II fluorescence imaging. Adv. Fun. Mater. 2019, 29, 1807376.

36

Lv, H.; Sun, L. Z.; Zou, L.; Xu, D. D.; Yao, H. Q.; Liu, B. Size-dependent synthesis and catalytic activities of trimetallic PdAgCu mesoporous nanospheres in ethanol electrooxidation. Chem. Sci. 2019, 10, 1986–1993.

37

Gong, F.; Cheng, L.; Yang, N. L.; Betzer, O.; Feng, L. Z.; Zhou, Q.; Li, Y. G.; Chen, R. H.; Popovtzer, R.; Liu, Z. Ultrasmall oxygen-deficient bimetallic oxide mnwox nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Adv. Mater. 2019, 31, 1900730.

38

Duan, X. P.; Liu, D. M.; Chan, C.; Lin, W. B. Polymeric micelle-mediated delivery of DNA-targeting organometallic complexes for resistant ovarian cancer treatment. Small 2015, 11, 3962–3972.

39

Xi, J. Q.; Wei, G.; An, L. F.; Xu, Z. B.; Xu, Z. L.; Fan, L.; Gao, L. Z. Copper/carbon hybrid nanozyme: Tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 2019, 19, 7645–7654.

40

Wu, D.; Duan, X. H.; Guan, Q. Q.; Liu, J.; Yang, X.; Zhang, F.; Huang, P.; Shen, J.; Shuai, X. T.; Cao, Z. Mesoporous polydopamine carrying manganese carbonyl responds to tumor microenvironment for multimodal imaging-guided cancer therapy. Adv. Fun. Mater. 2019, 29, 1900095.

41

Sun, Y. H.; Qin, H. S.; Yan, Z. Q.; Zhao, C. Q.; Ren, J. S.; Qu, X. G. Combating biofilm associated infection in vivo: Integration of quorum sensing inhibition and photodynamic treatment based on multidrug delivered hollow carbon nitride sphere. Adv. Fun. Mater. 2019, 29, 1808222.

42

Zhou, L. B.; Jing, Y.; Liu, Y. B.; Liu, Z. H.; Gao, D. Y.; Chen, H. B.; Song, W. Y.; Wang, T.; Fang, X. F.; Qin, W. P. et al. Mesoporous carbon nanospheres as a multifunctional carrier for cancer theranostics. Theranostics 2018, 8, 663–675.

43

Wang, H.; Chen, Q. W.; Zhou, S. Q. Carbon-based hybrid nanogels: A synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem. Soc. Rev. 2018, 47, 4198–4232.

44

Yang, W. P.; Li, X. X.; Li, Y.; Zhu, R. M.; Pang, H. Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 2019, 31, 1804740.

45

Yao, C.; Wang, W. X.; Wang, P. Y.; Zhao, M. Y.; Li, X. M.; Zhang, F. Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater. 2018, 30, 1704833.

46

Ma, J. H.; Ren, Y.; Zhou, X. R.; Liu, L. L.; Zhu, Y. H.; Cheng, X. W.; Xu, P. C.; Li, X. X.; Deng, Y. H.; Zhao, D. Y. Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: Gas sensing performance and mechanism study. Adv. Fun. Mater. 2018, 28, 1705268.

47

Liu, B.; Kuo, C. H.; Chen, J. J.; Luo, Z.; Thanneeru, S.; Li, W. K.; Song, W. Q.; Biswas, S.; Suib, S. L.; He, J. Ligand-assisted co-assembly approach toward mesoporous hybrid catalysts of transition-metal oxides and noble metals: Photochemical water splitting. Angew. Chem., Int. Ed. 2015, 54, 9061–9065.

48

Sun, Z. H.; Guo, J. J.; Zhu, S. M.; Mao, L.; Ma, J.; Zhang, D. A high-performance Bi2WO6-graphene photocatalyst for visible light-induced H2 and O2 generation. Nanoscale 2014, 6, 2186–2193.

49

Kamat, P. V. Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design. J. Phys. Chem. Lett. 2012, 3, 663–672.

50

Tanaka, A.; Hashimoto, K.; Kominami, H. Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J. Am. Chem. Soc. 2014, 136, 586–589.

51

Liu, C. H.; Cao, Y.; Cheng, Y.; Wang, D. D.; Xu, T. L.; Su, L.; Zhang, X. J.; Dong, H. F. An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 2020, 11, 1735.

File
12274_2021_3997_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 September 2021
Revised: 12 November 2021
Accepted: 14 November 2021
Published: 15 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 22027805 and 21874024), the National Key R&D Program of China (No. 2020YFA0210800), the joint research projects of Health and Education Commission of Fujian Province (No. 2019-WJ-20), and the Natural Science Foundation of Fujian Province (No. 2020J02012).

Return