AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium–sulfur batteries

Bo Zhang1Lu Wang1Bin Wang1Yanjun Zhai2Shuyuan Zeng2Meng Zhang1Yitai Qian1Liqiang Xu1( )
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
Show Author Information

Graphical Abstract

A distinct multifunctional integrated sulfur-host of petroleum coke-based porous carbon/NiCoP composites was prepared for capturing lithium polysulfides (LiPSs) and accelerating the conversion reaction kinetics of LiPSs.

Abstract

Sulfur-host material with abundant pore structure and high catalysis plays an important role in development of high-energy-density lithium–sulfur (Li–S) batteries. Herein, we implanted NiCoP nanoparticles into the N,S co-doped porous carbon derived from petroleum coke (PCPC) to fabricate the sulfur-host of PCPC/NiCoP composites. The high specific surface area of PCPC provides abundant adsorption sites for capturing LiPSs and the NiCoP nanoparticles to improve the polarity and boost the LiPSs conversion kinetics of PCPC. The Li–S cells fabricated with PCPC/NiCoP as sulfur-host deliver high discharge capacity of 1,462.7 mAh·g−1 under the current density of 0.1 C and exhibit ultralong lifespan over 800 cycles under the current density of 1, 2, and even 5 C. Additionally, the prepared composites cathodes deliver an outstanding discharge capacity of 932.5 and 826.4 mAh·g−1 at 0.5 and 1 C with a high sulfur loading of over 3.90 mg·cm−2, and remain stable about 60 cycles. Furthermore, the promoted adsorption-conversion process of polysulfides by introducing NiCoP nanoparticles into PCPC was investigated by experimental and theoretical calculation studies. This work offers a new light for tacking the obstacles of porous carbon-based sulfur-host and propelling the development of petroleum coke-based porous carbon for high performance Li–S batteries.

Electronic Supplementary Material

Download File(s)
12274_2021_3996_MOESM1_ESM.pdf (1.6 MB)

References

1

Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019, 5, 74–96.

2

Qie, L.; Manthiram, A. A facile layer-by-layer approach for high-areal-capacity sulfur cathodes. Adv. Mater. 2015, 27, 1694–1700.

3

Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

4

Li, Y.; Li, Z. H.; Zhou, C.; Liao, X. B.; Liu, X. W.; Hong, X. F.; Xu, X.; Zhao, Y.; Mai, L. Q. Gradient sulfur fixing separator with catalytic ability for stable lithium sulfur battery. Chem. Eng. J. 2021, 422, 130107.

5

Wu, T. L.; Qi, J.; Xu, M. Y.; Zhou, D.; Xiao, Z. B. Selective S/Li2S conversion via in-built crystal facet self-mediation: Toward high volumetric energy density lithium–sulfur batteries. ACS Nano 2020, 14, 15011–15022.

6

Wang, R. C.; Luo, C.; Wang, T. S.; Zhou, G. M.; Deng, Y. Q.; He, Y. B.; Zhang, Q. F.; Kang, F. Y.; Lv, W.; Yang, Q. H. Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries. Adv. Mater. 2020, 32, 2000315.

7

Zhou, J. Q.; Qian, T.; Xu, N.; Wang, M. F.; Ni, X. Y.; Liu, X. J.; Shen, X. W.; Yan, C. L. Selenium-doped cathodes for lithium-organosulfur batteries with greatly improved volumetric capacity and coulombic efficiency. Adv. Mater. 2017, 29, 1701294.

8

Xia, J. Y.; Hua, W. X.; Wang, L.; Sun, Y. F.; Geng, C. N.; Zhang, C.; Wang, W. C.; Wan, Y.; Yang, Q. H. Boosting catalytic activity by seeding nanocatalysts onto interlayers to inhibit polysulfide shuttling in Li–S batteries. Adv. Funct. Mater. 2021, 31, 2101980.

9

Chen, K.; Fang, R. P.; Lian, Z.; Zhang, X. Y.; Tang, P.; Li, B.; He, K.; Wang, D. W.; Cheng, H. M.; Sun, Z. H. et al. An in-situ solidification strategy to block polysulfides in lithium–sulfur batteries. Energy Storage Mater. 2021, 37, 224–232.

10

Xu, M. Y.; Liang, L.; Qi, J.; Wu, T. L.; Zhou, D.; Xiao, Z. B. Intralayered ostwald ripening-induced self-catalyzed growth of CNTs on MXene for robust lithium–sulfur batteries. Small 2021, 17, 2007446.

11

Zhong, M. E.; Guan, J. D.; Sun, J. C.; Shu, X. Q.; Ding, H.; Chen, L. Y.; Zhou, N.; Xiao, Z. B. A cost- and energy density-competitive lithium–sulfur battery. Energy Storage Mater. 2021, 41, 588–598.

12

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

13

Rybarczyk, M. K.; Peng, H. J.; Tang, C.; Lieder, M.; Zhang, Q.; Titirici, M. M. Porous carbon derived from rice husks as sustainable bioresources: Insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries. Green Chem. 2016, 18, 5169–5179.

14

Wang, Z. S.; Shen, J. D.; Ji, S. M.; Xu, X. J.; Zuo, S. Y.; Liu, Z. B.; Zhang, D. C.; Hu, R. Z.; Ouyang, L. Z.; Liu, J. et al. B, N codoped graphitic nanotubes loaded with co nanoparticles as superior sulfur host for advanced Li–S batteries. Small 2020, 16, 1906634.

15

Qi, J.; Wu, T. L.; Xu, M. Y.; Xiao, Z. B. Hierarchical assembly of CNTs-VSe2-VOx/S for flexible lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 39186–39194.

16

Zheng, G. Y.; Zhang, Q. F.; Cha, J. J.; Yang, Y.; Li, W. Y.; Seh, Z. W.; Cui, Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 2013, 13, 1265–1270.

17

Kim, S.; Cho, M.; Lee, Y. Multifunctional chitosan-rGO network binder for enhancing the cycle stability of Li–S batteries. Adv. Funct. Mater. 2020, 30, 1907680.

18

Xiao, Q. H. Q.; Li, G. R.; Li, M. J.; Liu, R. P.; Li, H. B.; Ren, P. F.; Dong, Y.; Feng, M.; Chen, Z. W. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium–sulfur batteries. J. Energy Chem. 2020, 44, 61–67.

19

Jin, C. B.; Nai, J. W.; Sheng, O. W.; Yuan, H. D.; Zhang, W. K.; Tao, X. Y.; Lou, X. W. Biomass-based materials for green lithium secondary batteries. Energy Environ. Sci. 2021, 14, 1326–1379.

20

Hong, X. D.; Liu, Y.; Fu, J. W.; Wang, X.; Zhang, T.; Wang, S. H.; Hou, F.; Liang, J. A wheat flour derived hierarchical porous carbon/graphitic carbon nitride composite for high-performance lithium–sulfur batteries. Carbon 2020, 170, 119–126.

21

Sun, C. S.; Guo, D. C.; Shao, Q. J.; Chen, J. Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium–sulfur batteries. Carbon 2021, 177, 430.

22

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 2017, 29, 1601759.

23

Lei, T. Y.; Xie, Y. M.; Wang, X. F.; Miao, S. Y.; Xiong, J.; Yan, C. L. TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium–sulfur batteries. Small 2017, 13, 1701013.

24

Chen, S. X.; Luo, J. H.; Li, N. Y.; Han, X. X.; Wang, J.; Deng, Q.; Zeng, Z. L.; Deng, S. G. Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan. Energy Storage Mater. 2020, 30, 187–195.

25

Zhang, J. T.; Li, Z.; Chen, Y.; Gao, S. Y.; Lou, X. W. Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium–sulfur batteries. Angew. Chem. 2018, 130, 11110–11114.

26

Xiao, Z. B.; Yang, Z.; Zhang, L. J.; Pan, H.; Wang, R. H. Sandwich-type NbS2@S@I-doped graphene for high-sulfur-loaded, ultrahigh-rate, and long-life lithium–sulfur batteries. ACS Nano 2017, 11, 8488–8498.

27

Zhong, Y.; Chao, D. L.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, Y. D.; Wang, X. L.; Xia, X. H.; Tu, J. P. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium–sulfur batteries. Adv. Funct. Mater. 2018, 28, 1706391.

28

Yao, Y.; Wang, H. Y.; Yang, H.; Zeng, S. F.; Xu, R.; Liu, F. F.; Shi, P. C.; Feng, Y. Z.; Wang, K.; Yang, W. J. et al. A dual-functional conductive framework embedded with TiN–VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li–S full batteries. Adv. Mater. 2020, 32, 1905658.

29

Li, C. C.; Liu, X. B.; Zhu, L.; Huang, R. Z.; Zhao, M. W.; Xu, L. Q.; Qian, Y. T. Conductive and polar titanium boride as a sulfur host for advanced lithium–sulfur batteries. Chem. Mater. 2018, 30, 6969–6977.

30

Yuan, H. D.; Chen, X. L.; Zhou, G. M.; Zhang, W. K.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; Xia, Y.; Zhang, J. et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium–sulfur batteries. ACS Energy Lett. 2017, 2, 1711–1719.

31

Chen, X. X.; Ding, X. Y.; Muheiyati, H.; Feng, Z. Y.; Xu, L. Q.; Ge, W. N.; Qian, Y. T. Hierarchical flower-like cobalt phosphosulfide derived from Prussian blue analogue as an efficient polysulfides adsorbent for long-life lithium–sulfur batteries. Nano Res. 2019, 12, 1115–1120.

32

Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li–S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

33

Gao, X. G.; Huang, Y.; Li, X.; Gao, H.; Li, T. H. SnP0.94 nanodots confined carbon aerogel with porous hollow superstructures as an exceptional polysulfide electrocatalyst and “adsorption nest” to enable enhanced lithium–sulfur batteries. Chem. Eng. J. 2021, 420, 129724.

34

Li, W. F.; Jiang, Y.; Li, Y. R.; Gao, Q.; Shen, W.; Jiang, Y. M.; He, R. X.; Li, M. Electronic modulation of CoP nanoarrays by Cr-doping for efficient overall water splitting. Chem. Eng. J. 2021, 425, 130651.

35

Li, Y.; Dong, Z. H.; Jiao, L. F. Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 2020, 10, 1902104.

36

Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. High-performance Li–S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 2017, 10, 3698–3705.

37

Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium–sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459.

38

Chen, Y.; Zhang, W. X.; Zhou, D.; Tian, H. J.; Su, D. W.; Wang, C. Y.; Stockdale, D.; Kang, F. Y.; Li, B. H.; Wang, G. X. Co–Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium–sulfur batteries. ACS Nano 2019, 13, 4731–4741.

39

Guo, Q. B.; Li, S.; Liu, X. J.; Lu, H. C.; Chang, X. Q.; Zhang, H. S.; Zhu, X. H.; Xia, Q. Y.; Yan, C. L.; Xia, H. Ultrastable sodium–sulfur batteries without polysulfides formation using slit ultramicropore carbon carrier. Adv. Sci. 2020, 7, 1903246.

40

Zhong, H.; Gao, J. W.; Sa, R. J.; Yang, S. L.; Wu, Z. C.; Wang, R. H. Carbon dioxide conversion upgraded by host-guest cooperation between nitrogen-rich covalent organic framework and imidazolium-based ionic polymer. ChemSusChem 2020, 13, 6050.

41

Shan, J.; Huang, J. J.; Li, J. Z.; Li, G.; Zhao, J. T.; Fang, Y. T. Insight into transformation of sulfur species during KOH activation of high sulfur petroleum coke. Fuel 2018, 215, 258–265.

42

Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium–sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.

43

Qiu, W. L.; Li, G. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Wang, X.; Chen, Z. W. Hierarchical micro-nanoclusters of bimetallic layered hydroxide polyhedrons as advanced sulfur reservoir for high-performance lithium-sulfur batteries. Adv. Sci. 2021, 8, 2003400.

44

Deng, S. J.; Zhong, Y.; Zeng, Y. X.; Wang, Y. D.; Wang, X. L.; Lu, X. H.; Xia, X. H.; Tu, J. P. Hollow TiO2@Co9S8 core-branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production. Adv. Sci. 2018, 5, 1700772.

45

Liu, W.; Luo, C.; Zhang, S. W.; Zhang, B.; Ma, J. B.; Wang, X. L.; Liu, W. H.; Li, Z. J.; Yang, Q. H.; Lv, W. Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium–sulfur batteries. ACS Nano 2021, 15, 7491–7499.

46

Xu, Z. L.; Lin, S. H.; Onofrio, N.; Zhou, L. M.; Shi, F. Y.; Lu, W.; Kang, K.; Zhang, Q.; Lau, S. P. Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nat. Commun. 2018, 9, 4164.

47

Luo, C.; Liang, X.; Sun, Y. F.; Lv, W.; Sun, Y. W.; Lu, Z. Y.; Hua, W. X.; Yang, H. T.; Wang, R. C.; Yan, C. L. et al. An organic nickel salt-based electrolyte additive boosts homogeneous catalysis for lithium–sulfur batteries. Energy Storage Mater. 2020, 33, 290–297.

48

Liu, J.; Qian, T.; Wang, M. F.; Zhou, J. Q.; Xu, N.; Yan, C. L. Use of tween polymer to enhance the compatibility of the Li/electrolyte interface for the high-performance and high-safety quasi-solid-state lithium–sulfur battery. Nano Lett. 2018, 18, 4598–4605.

49

Wang, D. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Chen, Z. W.; Wang, X. Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior. Nano Energy 2021, 81, 105602.

50

Wang, M. X.; Fan, L. S.; Qiu, Y.; Chen, D. D.; Wu, X.; Zhao, C. Y.; Cheng, J. H.; Wang, Y.; Zhang, N. Q.; Sun, K. N. Electrochemically active separators with excellent catalytic ability toward high-performance Li–S batteries. J. Mater. Chem. A 2018, 6, 11694–11699.

Nano Research
Pages 4058-4067
Cite this article:
Zhang B, Wang L, Wang B, et al. Petroleum coke derived porous carbon/NiCoP with efficient reviving catalytic and adsorptive activity as sulfur host for high performance lithium–sulfur batteries. Nano Research, 2022, 15(5): 4058-4067. https://doi.org/10.1007/s12274-021-3996-5
Topics:

726

Views

14

Crossref

14

Web of Science

12

Scopus

3

CSCD

Altmetrics

Received: 11 September 2021
Revised: 26 October 2021
Accepted: 14 November 2021
Published: 18 January 2022
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return