Journal Home > Volume 15 , Issue 5

Electrosynthesis of hydrogen peroxide (H2O2), as a sustainable alternative to the anthraquinone oxidation method, provides the feasibility of directly generating H2O2. Here, we report Cu-doped TiO2 as an efficient electrocatalyst which exhibits the excellent two-electron oxygen reduction reaction (2e ORR) performance with respect to the pristine TiO2. The Cu doping results in the distortion of TiO2 lattice and further forms a large number of oxygen vacancies and Ti3+. Such Cu-doped TiO2 exhibits a positive onset potential about 0.79 V and high H2O2 selectivity about 91.2%. Moreover, it also shows a larger H2O2 yield and good stability. Density functional theory (DFT) calculations reveal that Cu dopant not only improves the electrical conductivity of pristine TiO2 but reduces the *OOH adsorption energy of active sites, which is beneficial to promote subsequently 2e ORR process.

File
12274_2021_3995_MOESM1_ESM.pdf (4.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 September 2021
Revised: 22 October 2021
Accepted: 14 November 2021
Published: 11 January 2022
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22072015).

Return