Journal Home > Volume 15 , Issue 5

Silica aerogel was prepared by a sol-gel method with combination of freeze drying. The aerogel was filled with TiCl4 in autoclave and used to fabricate a hierarchical structure of TiO2 nanofiber shell and SiO2 aerogel core (SiO2@TiO2). The TiO2 nanofibers with a diameter of 10–15 nm were highly crystalline and mainly grew along the (101) or (001) planes, favoring charge migration along the growth axis of the fibers. The photoluminescence (PL) emission spectra show that the TiO2 nanofibers exhibited much lower PL intensity than P25. The free standing TiO2 nanofibers loaded with CuO had a band gap of 3.04 eV. When CuO was hierarchically loaded on the nanofiber surface and into the aerogel core (SiO2/CuO@TiO2/CuO), the absorption edge significantly red shifted, and the band gap was further narrowed to 2.66 eV. Meanwhile, Fe3+ implanted TiO2 nanofibers on the aerogel surface (SiO2@Fe-TiO2) were also fabricated in the same strategy. The CuO loaded nanofibers (SiO2/CuO@Fe-TiO2/CuO) had a band gap of 2.62 eV. The photocatalytic reduction of CO2 was performed under light irradiation by a 300 W Xe-lamp for 4 h. The methanol yield over the SiO2/CuO@Fe-TiO2/CuO reached ~ 2,400 μmol·gcat−1 in the absence of sacrificial agent.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical loading of CuO on SiO2 aerogel@high crystalline TiO2 nanofibers for efficiently photocatalytic reduction of CO2 without sacrificial agent

Show Author's information Man Wen1Beibei Ren1Xiangzhi Ye1Jianxiong He2Hong Jiang1Chunrong Xiong1( )
State Key Laboratory of Marine Resource Utilization in South China Sea, Special Glass Key Lab of Hainan Province, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
Hainan haikong Special Glass Techology Co., Ltd., Chengmai 571900, China

Abstract

Silica aerogel was prepared by a sol-gel method with combination of freeze drying. The aerogel was filled with TiCl4 in autoclave and used to fabricate a hierarchical structure of TiO2 nanofiber shell and SiO2 aerogel core (SiO2@TiO2). The TiO2 nanofibers with a diameter of 10–15 nm were highly crystalline and mainly grew along the (101) or (001) planes, favoring charge migration along the growth axis of the fibers. The photoluminescence (PL) emission spectra show that the TiO2 nanofibers exhibited much lower PL intensity than P25. The free standing TiO2 nanofibers loaded with CuO had a band gap of 3.04 eV. When CuO was hierarchically loaded on the nanofiber surface and into the aerogel core (SiO2/CuO@TiO2/CuO), the absorption edge significantly red shifted, and the band gap was further narrowed to 2.66 eV. Meanwhile, Fe3+ implanted TiO2 nanofibers on the aerogel surface (SiO2@Fe-TiO2) were also fabricated in the same strategy. The CuO loaded nanofibers (SiO2/CuO@Fe-TiO2/CuO) had a band gap of 2.62 eV. The photocatalytic reduction of CO2 was performed under light irradiation by a 300 W Xe-lamp for 4 h. The methanol yield over the SiO2/CuO@Fe-TiO2/CuO reached ~ 2,400 μmol·gcat−1 in the absence of sacrificial agent.

Keywords: high crystallinity, hierarchical structure, fibrous morphology, lattice doping, without sacrificial agent

References(49)

1

Xu, C. P.; Anusuyadevi, P. R.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 2019, 48, 3868–3902.

2

Chen, P.; Meng, L. H.; Chen, L.; Guo, J. K.; Shen, S.; Au, C. T.; Yin, S. F. Double-shell and flower-like ZnS-C3N4 derived from in situ supramolecular self-assembly for selective aerobic oxidation of amines to imines. ACS Sustainable Chem. Eng. 2019, 7, 14203–14209.

3

Lu, Y.; Zhang, J.; Wang, F. F.; Chen, X. B.; Feng, Z. C.; Li, C. K2SO4-assisted hexagonal/monoclinic WO3 phase junction for efficient photocatalytic degradation of RhB. ACS Appl. Energy Mater. 2018, 1, 2067–2077.

4

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

5

Zhou, W.; Guo, J. K.; Shen, S.; Pan, J. B.; Tang, J.; Chen, L.; Au, C. T.; Yin, S. F. Progress in photoelectrocatalytic reduction of carbon dioxide. Acta Phys. -Chim Sin. 2020, 36, 1906048.

6

Zhang, W.; Naidu, B. S.; Ou, J. Z.; O'Mullane, A. P.; Chrimes, A. F.; Carey, B. J.; Wang, Y. C.; Tang, S. Y.; Sivan, V.; Mitchell, A. et al. Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 1943–1948.

7

Xu, R. J.; Xu, H.; Ning, S. B.; Zhang, Q. Q.; Yang, Z. S.; Ye, J. H. Coupling of Cu catalyst and phosphonated Ru complex light absorber with TiO2 as bridge to achieve superior visible light CO2 photoreduction. Trans. Tianjin Univ. 2020, 26, 470–478.

8

Wei, L. F.; Yu, C. L.; Zhang, Q. H.; Liu, H.; Wang, Y. TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels. J. Mater. Chem. A 2018, 6, 22411–22436.

9

Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C. Photochem. Rev. 2015, 24, 16–42.

10

Biswas, M. R. U. D.; Ali, A.; Cho, K. Y.; Oh, W. C. Novel synthesis of WSe2-graphene-TiO2 ternary nanocomposite via ultrasonic technics for high photocatalytic reduction of CO2 into CH3OH. Ultrason. Sonochem. 2018, 42, 738–746.

11

Jin, J. R.; He, T. Facile synthesis of Bi2S3 nanoribbons for photocatalytic reduction of CO2 into CH3OH. Appl. Surf. Sci. 2017, 394, 364–370.

12

Rechberger, F.; Niederberger, M. Translucent nanoparticle-based aerogel monoliths as 3-dimensional photocatalysts for the selective photoreduction of CO2 to methanol in a continuous flow reactor. Mater. Horiz. 2017, 4, 1115–1121.

13

Kavil, Y. N.; Shaban, Y. A.; Al Farawati, R. K.; Orif, M. I.; Zobidi, M.; Khan, S. U. M. Photocatalytic conversion of CO2 into methanol over Cu-C/TiO2 nanoparticles under UV light and natural sunlight. J. Photochem. Photobiol. A Chemi. 2017, 347, 244–253.

14

Chen, W. T.; Dong, Y. S.; Yadav, P.; Aughterson, R. D.; Sun-Waterhouse, D.; Waterhouse, G. I. N. Effect of alcohol sacrificial agent on the performance of Cu/TiO2 photocatalysts for UV-driven hydrogen production. Appl. Catal. A Gen. 2020, 602, 117703.

15

Li, G. J.; Huang, J. Q.; Chen, J.; Deng, Z. H.; Huang, Q. F.; Liu, Z. G.; Guo, W.; Cao, R. Highly active photocatalyst of Cu2O/TiO2 octahedron for hydrogen generation. ACS Omega 2019, 4, 3392–3397.

16

Adnan, M. A. M.; Julkapli, N. M.; Amir, M. N. I.; Maamor, A. Effect on different TiO2 photocatalyst supports on photodecolorization of synthetic dyes: a review. Int. J. Environ. Sci. Technol. 2019, 16, 547–566.

17

Shuang, S.; Lv, R. T.; Cui, X. Y.; Xie, Z.; Zheng, J.; Zhang, Z. J. Efficient photocatalysis with graphene oxide/Ag/Ag2S-TiO2 nanocomposites under visible light irradiation. RSC Adv. 2018, 8, 5784–5791.

18

Gao, D. D.; Yu, H. G.; Xu, Y. Direct photoinduced synthesis and high H2-evolution performance of Bi-modified TiO2 photocatalyst in a Bi(III)-EG complex system. Appl. Surf. Sci. 2018, 462, 623–632.

19

Abu Bakar, S.; Ribeiro, C. An insight toward the photocatalytic activity of S doped 1-D TiO2 nanorods prepared via novel route: As promising platform for environmental leap. J. Mol. Catal. A Chem. 2016, 412, 78–92.

20

Nguyen-Phan, T. D.; Luo, S.; Vovchok, D.; Llorca, J.; Graciani, J.; Sanz, J. F.; Sallis, S.; Xu, W. Q.; Bai, J. M.; Piper, L. F. J. et al. Visible light-driven H2 production over highly dispersed Ruthenia on rutile TiO2 nanorods. ACS Catal. 2016, 6, 407–417.

21

Mao, M. L.; Yan, F. L.; Cui, C. Y.; Ma, J. M.; Zhang, M.; Wang, T. H.; Wang, C. S. Pipe-wire TiO2-Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 2017, 17, 3830–3836.

22

Lin, L.; Jiang, W. B.; Bechelany, M.; Nasr, M.; Jarvis, J.; Schaub, T.; Sapkota, R. R.; Miele, P.; Wang, H. Y.; Xu, P. Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: Degradation products and mechanisms. Chemosphere 2019, 220, 921–929.

23

Wetchakun, K.; Wetchakun, N.; Sakulsermsuk, S. An overview of solar/visible light-driven heterogeneous photocatalysis for water purification: TiO2- and ZnO-based photocatalysts used in suspension photoreactors. J. Ind. Eng. Chem. 2019, 71, 19–49.

24

Wu, K. L.; Wu, P. C.; Zhu, J. F.; Liu, C.; Dong, X. J.; Wu, J. N.; Meng, G. H.; Xu, K. B.; Hou, J.; Liu, Z. Y. et al. Synthesis of hollow core–shell CdS@TiO2/Ni2P photocatalyst for enhancing hydrogen evolution and degradation of MB. Chem. Eng. J. 2019, 360, 221–230.

25

Xu, F. Y.; Zhang, J. J.; Zhu, B. C.; Yu, J. G.; Xu, J. S. CuInS2 sensitized TiO2 hybrid nanofibers for improved photocatalytic CO2 reduction. Appl. Catal. B Environ. 2018, 230, 194–202.

26

He, G. Y.; Zhang, J. H.; Hu, Y.; Bai, Z. G.; Wei, C. H. Dual-template synthesis of mesoporous TiO2 nanotubes with structure-enhanced functional photocatalytic performance. Appl. Catal. B Environ. 2019, 250, 301–312.

27

Feng, X. J.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 2008, 8, 3781–3786.

28

Zhou, Z. J.; Fan, J. Q.; Wang, X.; Zhou, W. H.; Du, Z. L.; Wu, S. X. Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2011, 3, 4349–4353.

29

Aragaw, B. A.; Pan, C. J.; Su, W. N.; Chen, H. M.; Rick, J.; Hwang, B. J. Facile one-pot controlled synthesis of Sn and C codoped single crystal TiO2 nanowire arrays for highly efficient photoelectrochemical water splitting. Appl. Catal. B Environ. 2015, 163, 478–486.

30

Wu, J. M.; Tang, M. L. Hydrothermal growth of nanometer- to micrometer-size anatase single crystals with exposed (001) facets and their ability to assist photodegradation of rhodamine B in water. J. Hazard. Mater. 2011, 190, 566–573.

31

Zhang, H. M.; Wang, Y.; Liu, P. R.; Han, Y. H.; Yao, X. D.; Zou, J.; Cheng, H. M.; Zhao, H. J. Anatase TiO2 crystal facet growth: mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. ACS Appl. Mater. Interfaces 2011, 3, 2472–2478.

32

Xu, F. Y.; Meng, K.; Zhu, B. C.; Liu, H. B.; Xu, J. S.; Yu, J. G. Graphdiyne: a new photocatalytic CO2 reduction cocatalyst. Adv. Funct. Mater. 2019, 29, 1904256.

33

Shi, Q. Q.; Ping, G. C.; Wang, X. J.; Xu, H.; Li, J. M.; Cui, J. Q.; Abroshan, H.; Ding, H. J.; Li, G. CuO/TiO2 heterojunction composites: an efficient photocatalyst for selective oxidation of methanol to methyl formate. J. Mater. Chem. A 2019, 7, 2253–2260.

34

Fang, B. Z.; Xing, Y. L.; Bonakdarpour, A.; Zhang, S. C.; Wilkinson, D. P. Hierarchical CuO-TiO2 hollow microspheres for highly efficient photodriven reduction of CO2 to CH4. ACS Sustainable Chem. Eng. 2015, 3, 2381–2388.

35

Lu, D. F.; Zelekew, O. A.; Abay, A. K.; Huang, Q. T.; Chen, X. Y.; Zheng, Y. S. Synthesis and photocatalytic activities of a CuO/TiO2 composite catalyst using aquatic plants with accumulated copper as a template. RSC Adv. 2019, 9, 2018–2025.

36

Zhang, S. W.; Gong, X.; Shi, Q. Q.; Ping, G. C.; Xu, H.; Waleed, A.; Li, G. CuO nanoparticle-decorated TiO2-nanotube heterojunctions for direct synthesis of methyl formate via photo-oxidation of methanol. ACS Omega 2020, 5, 15942–15948.

37

Liu, C. H.; Guo, X. M.; Guo, Q. S.; Mao, D. S.; Yu, J.; Lu, G. Z. Methanol synthesis from CO2 hydrogenation over copper catalysts supported on MgO-modified TiO2. J. Mol. Catal. A Chem. 2016, 425, 86–93.

38

Wang, F. X.; Liang, L.; Shi, L.; Liu, M. S.; Sun, J. M. CO2-assisted synthesis of mesoporous carbon/C-doped ZnO composites for enhanced photocatalytic performance under visible light. Dalton Trans. 2014, 43, 16441–16449.

39

Gao, D. D.; Wu, X. H.; Wang, P.; Xu, Y.; Yu, H. G.; Yu, J. G. Simultaneous realization of direct photoinduced deposition and improved H2-evolution performance of Sn-nanoparticle-modified TiO2 photocatalyst. ACS Sustainable Chem. Eng. 2019, 7, 10084–10094.

40

Patil, S. B.; Basavarajappa, P. S.; Ganganagappa, N.; Jyothi, M. S.; Raghu, A. V.; Reddy, K. R. Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int. J. Hydrogen Energy 2019, 44, 13022–13039.

41

Chen, X. Y.; Ye, X. Z.; He, J. X.; Pan, L. S.; Xu, S. Y.; Xiong, C. R. Preparation of Fe3+-doped TiO2 aerogels for photocatalytic reduction of CO2 to methanol. J. Sol-Gel Sci. Technol. 2020, 95, 353–359.

42

Tian, C. S.; Sheng, W. L.; Tan, H.; Jiang, H.; Xiong, C. R. Fabrication of lattice-doped TiO2 nanofibers by vapor-phase growth for visible light-driven N2 conversion to ammonia. ACS Appl. Mater. Interfaces 2018, 10, 37453–37460.

43

Ma, J. Z.; He, H.; Liu, F. D. Effect of Fe on the photocatalytic removal of NO over visible light responsive Fe/TiO2 catalysts. Appl. Catal. B Environ. 2015, 179, 21–28.

44

Ravishankar, T. N.; Vaz, M. D. O.; Teixeira, S. R. The effects of surfactant in the sol-gel synthesis of CuO/TiO2 nanocomposites on its photocatalytic activities under UV–visible and visible light illuminations. New J. Chem. 2020, 44, 1888–1904.

45

Zhang, L. Q.; Cao, H. Z.; Pen, Q. Y.; Wu, L. K.; Hou, G. Y.; Tang, Y. P.; Zheng, G. Q. Embedded CuO nanoparticles@TiO2-nanotube arrays for photoelectrocatalytic reduction of CO2 to methanol. Electrochim. Acta 2018, 283, 1507–1513.

46

Cai, G. R.; Yin, Y. J.; Xia, D. W.; Chen, A. A.; Holoubek, J.; Scharf, J.; Yang, Y. Y. C.; Koh, K. H.; Li, M. Q.; Davies, D. M. et al. Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries. Nat. Commun. 2021, 12, 3395–3406.

47

Song, W. J.; Yoshitake, M. A work function study of ultra-thin alumina formation on NiAl (110) surface. Appl. Surf. Sci. 2005, 251, 14–18.

48

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

49

Albo, J.; Qadir, M. I.; Samperi, M.; Fernandes, J. A.; De Pedro, I.; Dupont, J. Use of an optofluidic microreactor and Cu nanoparticles synthesized in ionic liquid and embedded in TiO2 for an efficient photoreduction of CO2 to methanol. Chem. Eng. J. 2021, 404, 126643.

File
12274_2021_3994_MOESM1_ESM.pdf (898.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 August 2021
Revised: 14 October 2021
Accepted: 11 November 2021
Published: 13 December 2021
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors acknowledgement the financial supports from the Key R&D Planning Project of Hainan Province (No. ZDYF2020015), the Research Lab Construction of Hainan University (No. ZY2019HN09) and the National Natural Science Foundation of China (No. 51761010).

Return