Journal Home > Volume 15 , Issue 5

Flexible photodetectors (PDs) are indispensable components for next-generation wearable electronics. Recently, two-dimensional (2D) materials have been implemented as functional flexible optoelectronic devices due to their characteristics of atomically thin layers, excellent flexibility, and strain sensitivity. In this work, we developed a flexible photodetector based on MoS2/NiO heterojunction, and Fabry-Perot (F-P) and piezo-phototronic effect have been employed to enhance the responsivity (R) and external quantum efficiency (EQE) of the devices. The F-P effect is utilized to improve the optical absorption of the MoS2, resulting in an enhancement in the photoluminescence (PL) of monolayer MoS2 and the EQE of the photodetector by 30 and 130 times, respectively. The flexible photodetector exhibits an ultrahigh detectivity (D*) of 2.6 × 1014 Jones, which is the highest value ever reported for flexible MoS2 PDs. The piezo-potential of monolayer MoS2 decreases the valence band offset at the interface of MoS2/NiO, which increases the transfer efficiency of the photon-generated carriers significantly. Under 1.17% tensile strain, the R of the flexible photodetector can be enhanced by 271%. This research may provide a universal strategy for the design and performance optimization of 2D materials heterostructures for flexible optoelectronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabry-Perot interference and piezo-phototronic effect enhanced flexible MoS2 photodetector

Show Author's information Xuexia ChenXun Yang( )Qing LouYuan ZhangYancheng ChenYacong LuLin Dong( )Chong-Xin Shan( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

Abstract

Flexible photodetectors (PDs) are indispensable components for next-generation wearable electronics. Recently, two-dimensional (2D) materials have been implemented as functional flexible optoelectronic devices due to their characteristics of atomically thin layers, excellent flexibility, and strain sensitivity. In this work, we developed a flexible photodetector based on MoS2/NiO heterojunction, and Fabry-Perot (F-P) and piezo-phototronic effect have been employed to enhance the responsivity (R) and external quantum efficiency (EQE) of the devices. The F-P effect is utilized to improve the optical absorption of the MoS2, resulting in an enhancement in the photoluminescence (PL) of monolayer MoS2 and the EQE of the photodetector by 30 and 130 times, respectively. The flexible photodetector exhibits an ultrahigh detectivity (D*) of 2.6 × 1014 Jones, which is the highest value ever reported for flexible MoS2 PDs. The piezo-potential of monolayer MoS2 decreases the valence band offset at the interface of MoS2/NiO, which increases the transfer efficiency of the photon-generated carriers significantly. Under 1.17% tensile strain, the R of the flexible photodetector can be enhanced by 271%. This research may provide a universal strategy for the design and performance optimization of 2D materials heterostructures for flexible optoelectronics.

Keywords: MoS2, piezo-phototronic effect, flexible photodetector, Fabry-Perot (F-P) interference

References(76)

1

Chen, H.; Wang, H.; Wu, J.; Wang, F.; Zhang, T.; Wang, Y. F.; Liu, D. T.; Li, S. B.; Penty, R. V.; White, I. H. Flexible optoelectronic devices based on metal halide perovskites. Nano Res. 2020, 13, 1997–2018.

2

Wang, Y.; Sun, L. J.; Wang, C.; Yang, F. X.; Ren, X. C.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 2019, 48, 1492–1530.

3

Du, J. L.; Yu, H. H.; Liu, B. S.; Hong, M. Y.; Liao, Q. L.; Zhang, Z.; Zhang, Y. Strain engineering in 2D material-based flexible optoelectronics. Small Methods 2021, 5, 2000919.

4

Cai, S.; Xu, X. J.; Yang, W.; Chen, J. X.; Fang, X. S. Materials and designs for wearable photodetectors. Adv. Mater. 2019, 31, 1808138.

5

Xiao, Q.; Hu, C. X.; Wu, H. R.; Ren, Y. Y.; Li, X. Y.; Yang, Q. Q.; Dun, G. H.; Huang, Z. P.; Peng, Y.; Yan, F. et al. Antimonene-based flexible photodetector. Nanoscale Horiz. 2020, 5, 124–130.

6

Fang, J. Z.; Zhou, Z. Q.; Xiao, M. Q.; Lou, Z.; Wei, Z. M.; Shen, G. Z. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat 2020, 2, 291–317.

7

Song, J. K.; Kim, M. S.; Yoo, S.; Koo, J. H.; Kim, D. H. Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Res. 2021, 14, 2919–2937.

8

Tan, Y. J.; Godaba, H.; Chen, G.; Tan, S. T. M.; Wan, G. X.; Li, G. J. X.; Lee, P. M.; Cai, Y. Q.; Li, S.; Shepherd, R. F. et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat. Mater. 2020, 19, 182–188.

9

Colace, L.; Masini, G.; Assanto, G.; Luan, H. C.; Wada, K.; Kimerling, L. C. Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates. Appl. Phys. Lett. 2000, 76, 1231–1233.

10

Han, S. T.; Peng, H. Y.; Sun, Q. J.; Venkatesh, S.; Chung, K. S.; Lau, S. C.; Zhou, Y.; Roy, V. A. L. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375.

11

Xie, C.; Yan, F. Flexible photodetectors based on novel functional materials. Small 2017, 13, 1701822.

12

Chen, Y. C.; Lu, Y. J.; Yang, X.; Li, S. F.; Li, K. Y.; Chen, X. X.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Bandgap engineering of gallium oxides by crystalline disorder. Mater. Today Phys. 2021, 18, 100369.

13

Zhang, Z. F.; Lin, C. N.; Yang, X.; Tian, Y. Z.; Gao, C. J.; Li, K. Y.; Zang, J. H.; Yang, X. G.; Dong, L.; Shan, C. X. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 2021, 173, 427–432.

14

Li, K. Y.; Yang, X.; Tian, Y. Z.; Chen, Y. C.; Lin, C. N.; Zhang, Z. F.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Ga2O3 solar-blind position-sensitive detectors. Sci. China Phys. , Mech. Astron. 2020, 63, 117312.

15

Chen, X. X.; Xiao, X. H.; Shi, Z. F.; Du, R.; Li, X. J. Self-powered ultraviolet photodetection realized by GaN/Si nanoheterostructure based on silicon nanoporous pillar array. J. Alloy. Compd. 2018, 767, 368–373.

16

Dong, T.; Simões, J.; Yang, Z. C. Flexible photodetector based on 2D materials: Processing, architectures, and applications. Adv. Mater. Interfaces 2020, 7, 1901657.

17

Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63–84.

18

Pei, Y. F.; Chen, R.; Xu, H.; He, D.; Jiang, C. Z.; Li, W. Q.; Xiao, X. H. Recent progress about 2D metal dichalcogenides: Synthesis and application in photodetectors. Nano Res. 2021, 14, 1819–1839.

19

Liu, Y. M.; Li, X.; Guo, Y.; Yang, T.; Chen, K. J.; Lin, C. N.; Wei, J. Y.; Liu, Q.; Lu, Y. J.; Dong, L. et al. Modulation on the electronic properties and band gap of layered ReSe2 via strain engineering. J. Alloys Compd. 2020, 827, 154364.

20

Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

21

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

22

Guo, Y.; Li, B.; Huang, Y.; Du, S.; Sun, C.; Luo, H. L.; Liu, B. L.; Zhou, X. J.; Yang, J. L.; Li, J. J. et al. Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles. Nano Res. 2020, 13, 2072–2078.

23

Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660–5665.

24

Wang, J.; Han, J. Y.; Chen, X. Q.; Wang, X. R. Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 2019, 1, 33–53.

25

Miao, J. S.; Hu, W. D.; Jing, Y. L.; Luo, W. J.; Liao, L.; Pan, A. L.; Wu, S. W.; Cheng, J. X.; Chen, X. S.; Lu, W. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small 2015, 11, 2392–2398.

26

Furchi, M.; Urich, A.; Pospischil, A.; Lilley, G.; Unterrainer, K.; Detz, H.; Klang, P.; Andrews, A. M.; Schrenk, W.; Strasser, G. et al. Microcavity-integrated graphene photodetector. Nano Lett. 2012, 12, 2773–2777.

27

Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

28

Yamamoto, M.; Ueno, K.; Tsukagoshi, K. Pronounced photogating effect in atomically thin WSe2 with a self-limiting surface oxide layer. Appl. Phys. Lett. 2018, 112, 181902.

29

Kundu, A.; Rani, R.; Raturi, M.; Hazra, K. S. Photogating-induced controlled electrical response in 2D black phosphorus. ACS Appl. Electron. Mater. 2020, 2, 3562–3570.

30

Yang, Y. J.; Li, J. S.; Choi, S.; Jeon, S.; Cho, J. H.; Lee, B. H.; Lee, S. High-responsivity PtSe2 photodetector enhanced by photogating effect. Appl. Phys. Lett. 2021, 118, 013103.

31

Wang, W. Y.; Klots, A.; Prasai, D.; Yang, Y. M.; Bolotin, K. I.; Valentine, J. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Lett. 2015, 15, 7440–7444.

32

Zhao, X. H.; Duan, Y. S.; Li, K.; Fang, Y. C.; Song, X. X.; Zhang, H. T.; Wang, P.; Yan, Z. X. Sandwiched PbS/Au/PbS phototransistor for surface plasmon enhanced near-infrared photodetection. J. Alloys Compd. 2020, 815, 152331.

33

Jeong, H. Y.; Kim, U. J.; Kim, H.; Han, G. H.; Lee, H.; Kim, M. S.; Jin, Y.; Ly, T. H.; Lee, S. Y.; Roh, Y. G. et al. Optical gain in MoS2 via coupling with nanostructured substrate: Fabry-Pérot interference and plasmonic excitation. ACS Nano 2016, 10, 8192–8198.

34

Wang, Q. X.; Guo, J.; Ding, Z. J.; Qi, D. Y.; Jiang, J. Z.; Wang, Z.; Chen, W.; Xiang, Y. J.; Zhang, W. J.; Wee, A. T. S. Fabry-Pérot cavity-enhanced optical absorption in ultrasensitive tunable photodiodes based on hybrid 2D materials. Nano Lett. 2017, 17, 7593–7598.

35

Yan, W.; Shresha, V. R.; Jeangros, Q.; Azar, N. S.; Balendhran, S.; Ballif, C.; Crozier, K.; Bullock, J. Spectrally selective mid-wave infrared detection using Fabry-Pérot cavity enhanced black phosphorus 2D photodiodes. ACS Nano 2020, 14, 13645–13651.

36

Huang, X.; Feng, X. W.; Chen, L.; Wang, L.; Tan, W. C.; Huang, L.; Ang, K. W. Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure. Nano Energy 2019, 62, 667–673.

37

Bayan, S.; Gogurla, N.; Ghorai, A.; Ray, S. K. Förster resonance energy transfer mediated charge separation in plasmonic 2D/1D hybrid heterojunctions of Ag-C3N4/ZnO for enhanced photodetection. ACS Appl. Nano Mater. 2019, 2, 3848–3856.

38

Zhao, J. C.; Qiu, M.; Yu, X. C.; Yang, X. M.; Jin, W.; Lei, D. Y.; Yu, Y. T. Defining deep-subwavelength-resolution, wide-color-gamut, and large-viewing-angle flexible subtractive colors with an ultrathin asymmetric Fabry-Perot lossy cavity. Adv. Opt. Mater. 2019, 7, 1900646.

39

Wang, Z.; Wang, X. Y.; Cong, S.; Chen, J.; Sun, H. Z.; Chen, Z. G.; Song, G.; Geng, F. X.; Chen, Q.; Zhao, Z. G. Towards full-colour tunability of inorganic electrochromic devices using ultracompact Fabry-Pérot nanocavities. Nat. Commun. 2020, 11, 302.

40

Zhou, Y. L.; Liu, W.; Huang, X.; Zhang, A. H.; Zhang, Y.; Wang, Z. L. Theoretical study on two-dimensional MoS2 piezoelectric nanogenerators. Nano Res. 2016, 9, 800–807.

41

Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

42

Park, S.; Park, J.; Kim, Y. G.; Bae, S.; Kim, T. W.; Park, K. I.; Hong, B. H.; Jeong, C. K.; Lee, S. K. Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy 2020, 78, 105266.

43

Singh, E.; Singh, P.; Kim, K. S.; Yeom, G. Y.; Nalwa, H. S. Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 11061–11105.

44

Dai, M. J.; Zheng, W.; Zhang, X.; Wang, S. M.; Lin, J. H.; Li, K.; Hu, Y. X.; Sun, E. W.; Zhang, J.; Qiu, Y. F. et al. Enhanced piezoelectric effect derived from grain boundary in MoS2 monolayers. Nano Lett. 2020, 20, 201–207.

45

Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

46

Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151–155.

47

Zheng, D. Q.; Zhao, Z. M.; Huang, R.; Nie, J. H.; Li, L. J.; Zhang, Y. High-performance piezo-phototronic solar cell based on two-dimensional materials. Nano Energy 2017, 32, 448–453.

48

Peng, M. Z.; Li, Z.; Liu, C. H.; Zheng, Q.; Shi, X. Q.; Song, M.; Zhang, Y.; Du, S. Y.; Zhai, J. Y.; Wang, Z. L. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. ACS Nano 2015, 9, 3143–3150.

49

Wu, W. Z.; Wang, L.; Yu, R. M.; Liu, Y. Y.; Wei, S. H.; Hone, J.; Wang, Z. L. Piezophototronic effect in single-atomic-layer MoS2 for strain-gated flexible optoelectronics. Adv. Mater. 2016, 28, 8463–8468.

50

Hu, Y. F.; Zhang, Y.; Lin, L.; Ding, Y.; Zhu, G.; Wang, Z. L. Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films. Nano Lett. 2012, 12, 3851–3856.

51

Yu, S. H.; Lee, Y.; Jang, S. K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J. Y.; Kim, H.; Hwang, E.; Lee, S. et al. Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. ACS Nano 2014, 8, 8285–8291.

52

Xu, L.; Zhao, L. Y.; Wang, Y. S.; Zou, M. C.; Zhang, Q.; Cao, A. Y. Analysis of photoluminescence behavior of high-quality single-layer MoS2. Nano Res. 2019, 12, 1619–1624.

53

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

54

Wang, W. F.; Shu, H. B.; Wang, J.; Cheng, Y. C.; Liang, P.; Chen, X. S. Defect passivation and photoluminescence enhancement of monolayer MoS2 crystals through sodium halide-assisted chemical vapor deposition growth. ACS Appl. Mater. Interfaces 2020, 12, 9563–9571.

55

Bucher, T.; Vaskin, A.; Mupparapu, R.; Löchner, F. J. F.; George, A.; Chong, K. E.; Fasold, S.; Neumann, C.; Choi, D. Y.; Eilenberger, F. et al. Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces. ACS Photonics 2019, 6, 1002–1009.

56

Kats, M. A.; Capasso, F. Optical absorbers based on strong interference in ultra-thin films. Laser Photon. Rev. 2016, 10, 735–749.

57

Yoo, T. J.; Kim, S. Y.; Kwon, M. G.; Kim, C.; Chang, K. E.; Hwang, H. J.; Lee, B. H. A facile method for improving detectivity of graphene/p-type silicon heterojunction photodetector. Laser Photon. Rev. 2021, 15, 2000557.

58

Huo, N. J.; Konstantatos, G. Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 2018, 30, 1801164.

59

Wu, J. M.; Chang, W. E. Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Appl. Mater. Interfaces 2014, 6, 14286–14292.

60

Singh, S. D.; Das, A.; Ajimsha, R. S.; Singh, M. N.; Upadhyay, A.; Kamparath, R.; Mukherjee, C.; Misra, P.; Rai, S. K.; Sinha, A. K. et al. Studies on structural and optical properties of pulsed laser deposited NiO thin films under varying deposition parameters. Mat. Sci. Semicon. Proc. 2017, 66, 186–190.

61

Tong, L.; Duan, X. Y.; Song, L. Y.; Liu, T. D.; Ye, L.; Huang, X. Y.; Wang, P.; Sun, Y. H.; He, X.; Zhang, L. J. et al. Artificial control of in-plane anisotropic photoelectricity in monolayer MoS2. Appl. Mater. Today 2019, 15, 203–211.

62

Li, L.; Shang, Y. Y.; Lv, S. Y.; Li, Y. X.; Fang, Y.; Li, H. B. Flexible and highly responsive photodetectors based on heterostructures of MoS2 and all-carbon transistors. Nanotechnology 2021, 32, 315209.

63

Zhang, K.; Peng, M. Z.; Wu, W.; Guo, J. M.; Gao, G. Y.; Liu, Y. D.; Kou, J. Z.; Wen, R. M.; Lei, Y.; Yu, A. F. et al. A flexible p-CuO/n-MoS2 heterojunction photodetector with enhanced photoresponse by the piezo-phototronic effect. Mater. Horiz. 2017, 4, 274–280.

64

Pak, S.; Jang, A. R.; Lee, J.; Hong, J.; Giraud, P.; Lee, S.; Cho, Y.; An, G. H.; Lee, Y. W.; Shin, H. S. et al. Surface functionalization-induced photoresponse characteristics of monolayer MoS2 for fast flexible photodetectors. Nanoscale 2019, 11, 4726–4734.

65

Wu, H. L.; Si, H. N.; Zhang, Z. H.; Kang, Z.; Wu, P. W.; Zhou, L. X.; Zhang, S. C.; Zhang, Z.; Liao, Q. L.; Zhang, Y. All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Adv. Sci. 2018, 5, 1801219.

66

Zhang, K.; Zhai, J. Y.; Wang, Z. L. L. A monolayer MoS2 p-n homogenous photodiode with enhanced photoresponse by piezo-phototronic effect. 2D Mater. 2018, 5, 035038.

67

Pak, S.; Lee, J.; Jang, A. R.; Kim, S.; Park, K. H.; Sohn, J. I.; Cha, S. Strain-engineering of contact energy barriers and photoresponse behaviors in monolayer MoS2 flexible devices. Adv. Funct. Mater. 2020, 30, 2002023.

68

Selamneni, V.; Ganeshan, S. K.; Sahatiya, P. All MoS2 based 2D/0D localized unipolar heterojunctions as flexible broadband (UV-Vis-NIR) photodetectors. J. Mater. Chem. C 2020, 8, 11593–11602.

69

Zhang, L. W.; Shen, S. L.; Li, M.; Li, L. Y.; Zhang, J. B.; Fan, L. W.; Cheng, F.; Li, C.; Zhu, M.; Kang, Z. et al. Strategies for air-stable and tunable monolayer MoS2‐based hybrid photodetectors with high performance by regulating the fully inorganic trihalide perovskite nanocrystals. Adv. Opt. Mater. 2019, 7, 1801744.

70

Schneider, D. S.; Grundmann, A.; Bablich, A.; Passi, V.; Kataria, S.; Kalisch, H.; Heuken, M.; Vescan, A.; Neumaier, D.; Lemme, M. C. Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2. ACS Photonics 2020, 7, 1388–1395.

71

Seo, J. W. T.; Zhu, J.; Sangwan, V. K.; Secor, E. B.; Wallace, S. G.; Hersam, M. C. Fully inkjet-printed, mechanically flexible MoS2 nanosheet photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 5675–5681.

72

Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.

DOI
73

Kung, S. C.; van der Veer, W. E.; Yang, F.; Donavan, K. C.; Penner, R. M. 20 μs photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires. Nano Lett. 2010, 10, 1481–1485.

74

Zhang, Y.; Yu, Y. Q.; Mi, L. F.; Wang, H.; Zhu, Z. F.; Wu, Q. Y.; Zhang, Y. G.; Jiang, Y. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 2016, 12, 1062–1071.

75

van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

76

Kim, S. K.; Bhatia, R.; Kim, T. H.; Seol, D.; Kim, J. H.; Kim, H.; Seung, W.; Kim, Y.; Lee, Y. H.; Kim, S. W. Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 2016, 22, 483–489.

File
12274_2021_3989_MOESM1_ESM.pdf (378.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 September 2021
Revised: 28 October 2021
Accepted: 09 November 2021
Published: 06 December 2021
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors thank for the support of the National Natural Science Foundation of China (Nos. 11674290, U1704138, 61804136, U1804155, and 11974317), Henan Science Fund for Distinguished Young Scholars (No. 212300410020), Key Project of Henan Higher Education (No. 21A140001), the Zhengzhou University Physics Discipline Improvement Program, and China Postdoctoral Science Foundation (Nos. 2018M630829 and 2019T120630).

Return