Journal Home > Volume 15 , Issue 5

The application of titanium dioxide (TiO2) in the photovoltaic (PV) field is gaining traction as this material can be deployed in doping-free heterojunction solar cells with the role of electron selective contact. For modeling-based optimization of such contact, knowledge of the titanium oxide defect density of states (DOS) is crucial. In this paper, we report a method to extract the defect density through nondestructive optical measures, including the contribution given by small polaron optical transitions. The presence of both related to oxygen-vacancy defects and polarons is supported by the results of optical characterizations and the evaluation of previous observations resulting in a defect band fixed at 1 eV below the conduction band edge of the oxide. Solar cells employing pulsed laser deposited-TiO2 electron selective contacts were fabricated and characterized. The JV curve of these cells showed, however, an S-shape, then a detailed analysis of the reasons for such behavior was carried out. We use a model involving the series of a standard cell equivalent circuit with a Schottky junction in order to explain these atypical performances. A good matching between the experimental measurements and the adopted theoretical model was obtained. The extracted parameters are listed and analyzed to shed light on the reasons behind the low-performance cells.


menu
Abstract
Full text
Outline
About this article

Density of states characterization of TiO2 films deposited by pulsed laser deposition for heterojunction solar cells

Show Author's information Daniele Scirè1( )Roberto Macaluso1Mauro Mosca1Maria Pia Casaletto2Olindo Isabella3Miro Zeman3Isodiana Crupi1
Department of Engineering, University of Palermo, Viale delle Scienze, Ed. 9, Palermo 90128, Italy
Institute of Nanostructured Materials (ISMN), National Research Council (CNR), Via Ugo La Malfa 153, Palermo 90146, Italy
Photovoltaic Materials and Devices Group, Delft University of Technology, Mekelweg 4, Delft 2628CD, the Netherlands

Abstract

The application of titanium dioxide (TiO2) in the photovoltaic (PV) field is gaining traction as this material can be deployed in doping-free heterojunction solar cells with the role of electron selective contact. For modeling-based optimization of such contact, knowledge of the titanium oxide defect density of states (DOS) is crucial. In this paper, we report a method to extract the defect density through nondestructive optical measures, including the contribution given by small polaron optical transitions. The presence of both related to oxygen-vacancy defects and polarons is supported by the results of optical characterizations and the evaluation of previous observations resulting in a defect band fixed at 1 eV below the conduction band edge of the oxide. Solar cells employing pulsed laser deposited-TiO2 electron selective contacts were fabricated and characterized. The JV curve of these cells showed, however, an S-shape, then a detailed analysis of the reasons for such behavior was carried out. We use a model involving the series of a standard cell equivalent circuit with a Schottky junction in order to explain these atypical performances. A good matching between the experimental measurements and the adopted theoretical model was obtained. The extracted parameters are listed and analyzed to shed light on the reasons behind the low-performance cells.

Keywords: defects, solar cell, heterojunction, photovoltaic (PV), defect density, small polaron, pulsed laser deposition (PLD), titanium dioxide (TiO2)

References(90)

1
Philipps, S.; Warmuth, W. Photovoltaics Report; Fraunhofer ISE: Freiburg, 2021. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed Oct 1, 2021).
2

Green, M.; Dunlop, E.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. J. Solar cell efficiency tables (Version 57). Prog. Photovoltaics Res. Appl. 2021, 29, 3–15.

3

Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H. et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032.

4
Enel Green Power. New Efficiency Record for the Innovative Solar Cells Produced by 3SUN Based on Heterojunction Technology [Online]. https://www.enelgreenpower.com/media/news/2020/02/3 sun-solar- cell-bifacials-efficiency-record (accessed Mar 11, 2021).
5
McEvoy, A.; Markvart, T.; Castañer, L.Practical Handbook of Photovoltaics; Elsevier: Amsterdam, 2012.
6

Holman, Z. C.; Descoeudres, A.; Barraud, L.; Fernandez, F. Z.; Seif, J. P.; De Wolf, S.; Ballif, C. Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovoltaics 2012, 2, 7–15.

7

Bullock, J.; Hettick, M.; Geissbühler, J.; Ong, A. J.; Allen, T.; Sutter-Fella, C. M.; Chen, T.; Ota, H.; Schaler, E. W.; De Wolf, S. et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat. Energy 2016, 1, 15031.

8

Melskens, J.; Van De Loo, B. W. H.; Macco, B.; Black, L. E.; Smit, S.; Kessels, W. M. M. Passivating contacts for crystalline silicon solar cells: From concepts and materials to prospects. IEEE J. Photovoltaics 2018, 8, 373–388.

9

Cho, J.; Melskens, J.; Debucquoy, M.; Payo, M. R.; Jambaldinni, S.; Bearda, T.; Gordon, I.; Szlufcik, J.; Kessels, W. M. M.; Poortmans, J. Passivating electron-selective contacts for silicon solar cells based on an a-Si:H/TiOx stack and a low work function metal. Prog. Photovoltaics Res. Appl. 2018, 26, 835–845.

10

Ding, J. N.; Zhou, Y. R.; Dong, G. Q.; Liu, M.; Yu, D. H.; Liu, F. Z. Solution-processed ZnO as the efficient passivation and electron selective layer of silicon solar cells. Prog. Photovoltaics Res. Appl. 2018, 26, 974–980.

11

Yang, X. B.; Aydin, E.; Xu, H.; Kang, J. X.; Hedhili, M.; Liu, W. Z.; Wan, Y. M.; Peng, J.; Samundsett, C.; Cuevas, A. et al. Tantalum nitride electron-selective contact for crystalline silicon solar cells. Adv. Energy Mater. 2018, 8, 1800608.

12

Horynová, E.; Romanyuk, O.; Horák, L.; Remeš, Z.; Conrad, B.; Amalathas, A. P.; Landová, L.; Houdková, J.; Jiříček, P.; Finsterle, T. et al. Optical characterization of low temperature amorphous MoOx, WOx, and VOx prepared by pulsed laser deposition. Thin Solid Films 2020, 693, 137690.

13
Scirè, D.; Bonadonna, M.; Zhao, Y. F.; Procel, P.; Isabella, O.; Zeman, M.; MacAluso, R.; Mosca, M.; Crupi, I. Analysis of transition metal oxides based heterojunction solar cells with S-shaped JVcurves. In Proceedings of the 12th AEIT International Annual Conference, Catania, 2020, pp 1–6.
14

Messmer, C.; Bivour, M.; Schön, J.; Hermle, M. Requirements for efficient hole extraction in transition metal oxide-based silicon heterojunction solar cells. J. Appl. Phys. 2018, 124, 085702.

15

Gesheva, K.; Ivanova, T.; Bodurov, G.; Szilágyi, I. M.; Justh, N.; Kéri, O.; Boyadjiev, S.; Nagy, D.; Aleksandrova, M. Technologies for deposition of transition metal oxide thin films: Application as functional layers in “smart windows” and photocatalytic systems. J. Phys. Conf. Ser. 2016, 682, 012011.

16

Mews, M.; Lemaire, A.; Korte, L. Sputtered tungsten oxide as hole contact for silicon heterojunction solar cells. IEEE J. Photovoltaics 2017, 7, 1209–1215.

17

Mallem, K.; Kim, Y. J.; Hussain, S. Q.; Dutta, S.; Le, A. H. T.; Ju, M.; Park, J.; Cho, Y. H.; Kim, Y.; Cho, E. C. et al. Molybdenum oxide: A superior hole extraction layer for replacing p-type hydrogenated amorphous silicon with high efficiency heterojunction Si solar cells. Mater. Res. Bull. 2019, 110, 90–96.

18

Yu, C.; Xu, S. Z.; Yao, J. X.; Han, S. W. Recent advances in and new perspectives on crystalline silicon solar cells with carrier-selective passivation contacts. Crystals 2018, 8, 430.

19

Dréon, J.; Jeangros, Q.; Cattin, J.; Haschke, J.; Antognini, L.; Ballif, C.; Boccard, M. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 2020, 70, 104495.

20

Perego, M.; Seguini, G.; Scarel, G.; Fanciulli, M.; Wallrapp, F. Energy band alignment at TiO2/Si interface with various interlayers. J. Appl. Phys. 2008, 103, 043509.

21

Matsui, T.; Bivour, M.; Ndione, P. F.; Bonilla, R. S.; Hermle, M. Origin of the tunable carrier selectivity of atomic-layer-deposited TiOx nanolayers in crystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 2020, 209, 110461.

22

Yang, J. F.; Li, L.; Li, W. S.; Mao, L. F. Formation mechanism of conduction path in titanium dioxide with Ti-interstitials-doped: Car-parrinello molecular dynamics. AIP Conf. Proc. 2017, 1794, 020024.

23

Yang, X. B.; Bi, Q. Y.; Ali, H.; Davis, K.; Schoenfeld, W. V.; Weber, K. High-performance TiO2-based electron-selective contacts for crystalline silicon solar cells. Adv. Mater. 2016, 28, 5891–5897.

24

Nagamatsu, K. A.; Avasthi, S.; Sahasrabudhe, G.; Man, G.; Jhaveri, J.; Berg, A. H.; Schwartz, J.; Kahn, A.; Wagner, S.; Sturm, J. C. Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell. Appl. Phys. Lett. 2015, 106, 123906.

25

Yang, X. B.; Weber, K.; Hameiri, Z.; De Wolf, S. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells. Prog. Photovoltaics Res. Appl. 2017, 25, 896–904.

26

Allen, T. G.; Bullock, J.; Jeangros, Q.; Samundsett, C.; Wan, Y.; Cui, J.; Hessler-Wyser, A.; De Wolf, S.; Javey, A.; Cuevas, A. A low resistance calcium/reduced titania passivated contact for high efficiency crystalline silicon solar cells. Adv. Energy Mater. 2017, 7, 1602606.

27

Huh, D.; Oh, K.; Kim, M.; Choi, H. J.; Kim, D. S.; Lee, H. Selectively patterned TiO2 nanorods as electron transport pathway for high performance perovskite solar cells. Nano Res. 2019, 12, 601–606.

28

Pan, B.; Gu, J. H.; Xu, X. L.; Xiao, L. B.; Zhao, J.; Zou, G. F. Interface engineering of high performance all-inorganic perovskite solar cells via low-temperature processed TiO2 nanopillar arrays. Nano Res. 2021, 14, 3431–3438.

29

Rathee, D.; Arya, S. K.; Kumar, M. Analysis of TiO2 for microelectronic applications: Effect of deposition methods on their electrical properties. Front. Optoelectron. China 2011, 4, 349–358.

30

Aglieri, V.; Zaffora, A.; Lullo, G.; Santamaria, M.; Di Franco, F.; Lo Cicero, U.; Mosca, M.; Macaluso, R. Resistive switching in microscale anodic titanium dioxide-based memristors. Superlattices Microstruct. 2018, 113, 135–142.

31

Mosca, M.; Macaluso, R.; Randazzo, G.; Di Bella, M.; Caruso, F.; Calì, C.; Di Franco, F.; Santamaria, M.; Di Quarto, F. Anodized Ti−Si alloy as gate oxide of electrochemically-fabricated organic field-effect transistors. ECS Solid State Lett. 2014, 3, 7–9.

32

Ji, T.; He, S. Q.; Ai, F. J.; Wu, J. H.; Yan, L.; Hu, J. Q.; Liao, M. Y. An adjustable multi-color detector based on regulating TiO2 surface adsorption and multi-junction synergy. Nano Res. 2021, 14, 3423–3430.

33

Li, Y. B.; Cooper, J. K.; Liu, W. J.; Sutter-Fella, C. M.; Amani, M.; Beeman, J. W.; Javey, A.; Ager, J. W.; Liu, Y.; Toma, F. M. et al. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nat. Commun. 2016, 7, 12446.

34

Lewis, A.; Troughton, J. R.; Smith, B.; McGettrick, J.; Dunlop, T.; De Rossi, F.; Pockett, A.; Spence, M.; Carnie, M. J.; Watson, T. M. et al. In-depth analysis of defects in TiO2 compact electron transport layers and impact on performance and hysteresis of planar perovskite devices at low light. Sol. Energy Mater. Sol. Cells 2020, 209, 110448.

35

Messmer, C.; Bivour, M.; Schön, J.; Glunz, S. W.; Hermle, M. Numerical simulation of silicon heterojunction solar cells featuring metal oxides as carrier-selective contacts. IEEE J. Photovoltaics 2018, 8, 456–464.

36

Shen, H. P.; Omelchenko, S. T.; Jacobs, D. A.; Yalamanchili, S.; Wan, Y. M.; Yan, D.; Phang, P.; Duong, T.; Wu, Y. L.; Yin, Y. T. et al. In situ recombination junction between P-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells. Sci. Adv. 2018, 4, eaau9711.

37

Vaněček, M.; Kočka, J.; Stuchlík, J.; Kožíšek, Z.; Štika, O.; Tříska, A. Density of the gap states in undoped and doped glow discharge A-Si: H. Sol. Energy Mater. 1983, 8, 411–423.

38
KočKa, J.; Vaněček, M.; TříSka, A. Energy and density of gap states in a-Si:H. In Amorphous Silicon and Related Materials; Fritzsche, H., Ed.; World Scientific: Singapore, 1989; pp 297–327.
39

Morawiec, S.; Holovský, J.; Mendes, M. J.; Müller, M.; Ganzerová, K.; Vetushka, A.; Ledinský, M.; Priolo, F.; Fejfar, A.; Crupi, I. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application. Sci. Rep. 2016, 6, 22481.

40

Scirè, D.; Procel, P.; Gulino, A.; Isabella, O.; Zeman, M.; Crupi, I. Sub-gap defect density characterization of molybdenum oxide: An annealing study for solar cell applications. Nano Res. 2020, 13, 3416–3424.

41

Scirè, D.; Macaluso, R.; Mosca, M.; Mirabella, S.; Gulino, A.; Isabella, O.; Zeman, M.; Crupi, I. Characterization of the defect density states in MoOx for C-Si solar cell applications. Solid State Electron. 2021, 185, 108135.

42
Sherwood, P. M. A. Data analysis in X-ray photoelectron spectroscopy. In Practical surface analysis by Auger and X-ray Photoelectron Spectroscopy; Briggs, D.; Seah, M. P., Eds.; John Wiley and Sons: Chichester, 1983; pp 445–475.
43

Wagner, C. D.; Davis, L. E.; Riggs, W. M. The energy dependence of the electron mean free path. Surf. Interface Anal. 1980, 2, 53–55.

44
Alexander V. Naumkin, A. V.; Kraut-Vass, A.; Gaarenstroom, S. W.; Powell, C. J. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1; National Institute of Standards and Technology: Gaithersburg MD, 2000. https://srdata.nist.gov/xps/ (accessed Jul 1, 2021).
45

Remes, Z.; Vasudevan, R.; Jarolimek, K.; Smets, A. H. M.; Zeman, M. The optical spectra of a-Si:H and a-SiC:H thin films measured by the absolute photothermal deflection spectroscopy (PDS). Solid State Phenom. 2014, 213, 19–28.

46

Singh, M.; Santbergen, R.; Mazzarella, L.; Madrampazakis, A.; Yang, G.; Vismara, R.; Remes, Z.; Weeber, A.; Zeman, M.; Isabella, O. Optical characterization of poly-SiOx and poly-SiCx carrier-selective passivating contacts. Sol. Energy Mater. Sol. Cells 2020, 210, 110507.

47

Zhao, Y. F.; Mazzarella, L.; Procel, P.; Han, C.; Yang, G. T.; Weeber, A.; Zeman, M.; Isabella, O. Doped hydrogenated nanocrystalline silicon oxide layers for high-efficiency c-Si heterojunction solar cells. Prog. Photovoltaics Res. Appl. 2020, 28, 425–435.

48

Bharti, B.; Kumar, S.; Lee, H. N.; Kumar, R. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 2016, 6, 32355.

49

Sanjinés, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; Lévy, F. Electronic structure of anatase TiO2 oxide. J. Appl. Phys. 1994, 75, 2945–2951.

50

Gouttebaron, R.; Cornelissen, D.; Snyders, R.; Dauchot, J. P.; Wautelet, M.; Hecq, M. XPS study of TiOx thin films prepared by d. c. magnetron sputtering in Ar-O2 gas mixtures. Surf. Interface Anal. 2000, 30, 527–530.

DOI
51

Akl, A. A.; Kamal, H.; Abdel-Hady, K. Fabrication and characterization of sputtered titanium dioxide films. Appl. Surf. Sci. 2006, 252, 8651–8656.

52

Zhang, J. Y.; Boyd, I. W.; O’Sullivan, B. J.; Hurley, P. K.; Kelly, P. V.; Sénateur, J. P. Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. J. Non. Cryst. Solids 2002, 303, 134–138.

53

Katagiri, K.; Suzuki, T.; Muto, H.; Sakai, M.; Matsuda, A. Low temperature crystallization of TiO2 in layer-by-layer assembled thin films formed from water-soluble Ti-complex and polycations. Colloids Surfaces A Physicochem. Eng. Aspects 2008, 321, 233–237.

54

Matthews, A. The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions. Am. Mineral. 1976, 61, 419–424.

55

Bakri, A. S.; Sahdan, M. Z.; Adriyanto, F.; Raship, N. A.; Said, N. D. M.; Abdullah, S. A.; Rahim, M. S. Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties. AIP Conf. Proc. 2017, 1788, 030030.

56

Zhang, Q.; Ma, L. S.; Shao, M. H.; Huang, J. Z.; Ding, M.; Deng, X. L.; Wei, X. Q.; Xu, X. J. Anodic oxidation synthesis of one-dimensional TiO2 nanostructures for photocatalytic and field emission properties. J. Nanomater. 2014, 2014, 831752.

57

Stagi, L.; Carbonaro, C. M.; Corpino, R.; Chiriu, D.; Ricci, P. C. Light induced TiO2 phase transformation: Correlation with luminescent surface defects. Phys. Status Solidi Basic Res. 2015, 252, 124–129.

58

Rajaraman, T. S.; Parikh, S. P.; Gandhi, V. G. Black TiO2: A review of its properties and conflicting trends. Chem. Eng. J. 2020, 389, 123918.

59

Zhu, G. Y.; Ma, L. B.; Lin, H. N.; Zhao, P. Y.; Wang, L.; Hu, Y.; Chen, R. P.; Chen, T.; Wang, Y. R.; Tie, Z. X. et al. High-performance Li-ion capacitor based on black-TiO2−x/graphene aerogel anode and biomass-derived microporous carbon cathode. Nano Res. 2019, 12, 1713–1719.

60

Daniel, L. S.; Nagai, H.; Yoshida, N.; Sato, M. Photocatalytic activity of vis-responsive Ag-nanoparticles/TiO2 composite thin films fabricated by molecular precursor method (MPM). Catalysts 2013, 3, 625–645.

61

Koster, G.; Blank, D. H. A.; Rijnders, G. A. J. H. M. Oxygen in complex oxide thin films grown by pulsed laser deposition: A perspective. J. Supercond. Nov. Magn. 2020, 33, 205–212.

62

Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637.

63

Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 1953, 92, 1324.

64

Zhong, Q.; Vohs, J. M.; Bonnell, D. A. Effect of reduction on the topographic and electronic structure of TiO2(110) surfaces. Surf. Sci. 1992, 274, 35–43.

65

Choudhury, B.; Choudhury, A. Oxygen defect dependent variation of band gap, urbach energy and luminescence property of anatase, anatase-rutile mixed phase and of rutile phases of TiO2 nanoparticles. Phys. E Low-Dimensional Syst. Nanostructures 2014, 56, 364–371.

66

Bouizem, Y.; Belfedal, A.; Sib, J. D.; Chahed, L. Density of states in hydrogenated amorphous germanium seen via optical absorption spectra. Solid State Commun. 2003, 126, 675–680.

67

Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 1988, 92, 5196–5201.

68

Jackson, W. B.; Kelso, S. M.; Tsai, C. C.; Allen, J. W.; Oh, S. J. Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon. Phys. Rev. B 1985, 31, 5187–5198.

69

Gulino, A.; Tabbì, G. CdO thin films: A study of their electronic structure by electron spin resonance spectroscopy. Appl. Surf. Sci. 2005, 245, 322–327.

70

Deb, S. K.; Chopoorian, J. A. Optical properties and color-center formation in thin films of molybdenum trioxide. J. Appl. Phys. 1966, 37, 4818–4825.

71

Ederth, J.; Hoel, A.; Niklasson, G. A.; Granqvist, C. G. Small polaron formation in porous WO3−x nanoparticle films. J. Appl. Phys. 2004, 96, 5722–5726.

72

Niklasson, G. A.; Klasson, J.; Olsson, E. Polaron absorption in tungsten oxide nanoparticle aggregates. Electrochim. Acta 2001, 46, 1967–1971.

73

Dieterle, M.; Weinberg, G.; Mestl, G. Raman spectroscopy of molybdenum oxides-Part I. Structural characterization of oxygen defects in MoO3−x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 2002, 4, 812–821.

74

Chen, J.; Bogdanov, N. A.; Usvyat, D.; Fang, W.; Michaelides, A.; Alavi, A. The color center singlet state of oxygen vacancies in TiO2. J. Chem. Phys. 2020, 153, 204704.

75
Reticcioli, M.; Diebold, U.; Kresse, G.; Franchini, C. Small Polarons in Transition Metal Oxides. In Handbook of Materials Modeling; Andreoni, W.; Yip, S., Eds.; Springer, Cham, 2019.
76

Moses, P. G.; Janotti, A.; Franchini, C.; Kresse, G.; Van De Walle, C. G. donor defects and small polarons on the TiO2(110) surface. J. Appl. Phys. 2016, 119, 181503.

77

Colton, R. J.; Guzman, A. M.; Rabalais, J. W. Photochromism and electrochromism in amorphous transition metal oxide films. Acc. Chem. Res. 1978, 11, 170–176.

78

Austin, I. G.; Mott, N. F. Polarons in crystalline and non-crystalline materials. Adv. Phys. 2001, 50, 757–812.

79

Zaynobidinov, S.; Ikramov, R. G.; Jalalov, R. M. Urbach energy and the tails of the density of states in amorphous semiconductors. J. Appl. Spectrosc. 2011, 78, 223–227.

80

Nakano, Y.; Morikawa, T.; Ohwaki, T.; Taga, Y. Origin of visible-light sensitivity in N-doped TiO2 films. Chem. Phys. 2007, 339, 20–26.

81

Freysoldt, C.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Kresse, G.; Janotti, A.; Van De Walle, C. G. First-principles calculations for point defects in solids. Rev. Mod. Phys. 2014, 86, 253–305.

82

Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 2002, 63, 1909–1920.

83

Mudgal, S.; Nayak, M.; Singh, S.; Komarala, V. K. Study of anomalous S-shape in current density-voltage characteristics of carrier selective contact molybdenum oxide and amorphous silicon based heterojunction silicon solar cells. AIP Conf. Proc. 2019, 2147, 020009.

84

Saive, R. S-shaped current-voltage characteristics in solar cells: A review. IEEE J. Photovoltaics 2019, 9, 1477–1484.

85

Di Piazza, M. C.; Luna, M.; Vitale, G. Dynamic PV model parameter identification by least-squares regression. IEEE J. Photovoltaics 2013, 3, 799–806.

86

García-Sánchez, F. J.; Lugo-Muñoz, D.; Muci, J.; Ortiz-Conde, A. Lumped parameter modeling of organic solar cells’ S-shaped IV characteristics. IEEE J. Photovoltaics 2013, 3, 330–335.

87

Aghassi, A.; Fay, C. D.; Mozer, A. Investigation of S-shaped current-voltage characteristics in high-performance solution-processed small molecule bulk heterojunction solar cells. Org. Electron. 2018, 62, 133–141.

88

Zuo, L. J.; Yao, J. Z.; Li, H. Y.; Chen, H. Z. Assessing the origin of the S-shaped I−V curve in organic solar cells: An improved equivalent circuit model. Sol. Energy Mater. Sol. Cells 2014, 122, 88–93.

89

Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; Knuth, D. E. On the lambert W function. Adv. Comput. Math. 1996, 5, 329–359.

90

Breitenstein, O.; Bauer, J.; Altermatt, P. P.; Ramspeck, K. Influence of defects on solar cell characteristics. Solid State Phenom. 2009, 156-158, 1–10.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 July 2021
Revised: 08 November 2021
Accepted: 09 November 2021
Published: 06 December 2021
Issue date: May 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We thank A. Nicolosi for the assistance with the PLD deposition, M. Bonadonna for the assistance with the XPS analysis and Y. Zhao for the assistance with the solar cell prototype manufacturing.

Return