Journal Home > Volume 15 , Issue 4

Semiconductor magic-sized nanoclusters have got tremendous interests owing to their distinct chemical and photophysical properties, however, researches concerning their applications are still quite limited. Herein, we employ magic-sized CdSe nanoclusters as the light absorber for hydrogen photogeneration, which exhibits much better photocatalytic performance as compared to other conventional semiconductor quantum dots, such as CdS, CdSe, CdS/CdSe, and CdSe/CdS under identical conditions. Photoluminescence lifetime and transient absorption studies indicated that the superior activity is mainly ascribed to the longer exciton lifetime and fast electron transfer from nanoclusters to cocatalyst. Moreover, the issue of instability during reaction could be significantly inhibited by anchoring Zn2+ onto the surface of nanoclusters, which gives the average efficacy of hydrogen evolution at 0.61 ± 0.07 mL·h−1·mgcatalyst−1, i.e., 27.3 ± 2.9 mmol·h−1·gcatalyst−1 (420 nm) with maintained 95.2% of original activity over 12 h illumination.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Magic-sized CdSe nanoclusters for efficient visible-light-driven hydrogen evolution

Show Author's information Ping Wang1( )Qingqing Yang2Chen Xu1,3Bo Wang1Huan Wang4Jidong Zhang2,3Yongdong Jin1,3( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
University of Science and Technology of China, No. 96, JinZhai Road, Hefei 230026, China
School of Materials Science and Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China

Abstract

Semiconductor magic-sized nanoclusters have got tremendous interests owing to their distinct chemical and photophysical properties, however, researches concerning their applications are still quite limited. Herein, we employ magic-sized CdSe nanoclusters as the light absorber for hydrogen photogeneration, which exhibits much better photocatalytic performance as compared to other conventional semiconductor quantum dots, such as CdS, CdSe, CdS/CdSe, and CdSe/CdS under identical conditions. Photoluminescence lifetime and transient absorption studies indicated that the superior activity is mainly ascribed to the longer exciton lifetime and fast electron transfer from nanoclusters to cocatalyst. Moreover, the issue of instability during reaction could be significantly inhibited by anchoring Zn2+ onto the surface of nanoclusters, which gives the average efficacy of hydrogen evolution at 0.61 ± 0.07 mL·h−1·mgcatalyst−1, i.e., 27.3 ± 2.9 mmol·h−1·gcatalyst−1 (420 nm) with maintained 95.2% of original activity over 12 h illumination.

Keywords: photocatalysis, hydrogen, CdSe, magic-sized nanoclusters

References(59)

1

Schleussner, C. F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E. M.; Knutti, R.; Levermann, A.; Frieler, K.; Hare, W. Science and policy characteristics of the Paris agreement temperature goal. Nat. Climate Change 2016, 6, 827–835.

2

Rogelj, J.; Schaeffer, M.; Meinshausen, M.; Knutti, R.; Alcamo, J.; Riahi, K.; Hare, W. Zero emission targets as long-term global goals for climate protection. Environ. Res. Lett. 2015, 10, 105007.

3

Wang, Q.; Domen, K. Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985.

4

Esswein, A. J.; Nocera, D. G. Hydrogen production by molecular photocatalysis. Chem. Rev. 2007, 107, 4022–4047.

5

Turner, J. A. Chemistry. A nickel finish protects silicon photoanodes for water splitting. Science 2013, 342, 811–812.

6

Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys. Today 2004, 57, 39–44.

7

Li, Y. Y.; Wu, Q. N.; Zhang, K.; Hu, B.; Lin, Y. H.; Wang, D. J.; Xie, T. F. Boosting photocatalytic oxygen evolution: Purposely constructing direct Z-scheme photoanode by modulating the interface electric field. Chem. Res. Chin. Univ. 2020, 36, 1059–1067.

8

Li, Y. Y.; Wu, Q. N.; Chen, Y. F.; Zhang, R.; Li, C. Y.; Zhang, K.; Li, M. J.; Lin, Y. H.; Wang, D. J.; Zou, X. Z. et al. Interface engineering Z-scheme Ti-Fe2O3/In2O3 photoanode for highly efficient photoelectrochemical water splitting. Appl. Catal. B Environ. 2021, 290, 120058.

9

Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

10

Das, A.; Han, Z. J.; Haghighi, M. G.; Eisenberg, R. Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange. Proc. Natl. Acad. Sci. USA 2013, 110, 16716–16723.

11

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

12

Wang, P.; Zhang, J.; He, H.; Xu, X.; Jin, Y. The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H2 photogeneration from water. Nanoscale 2015, 7, 5767–5775.

13

Han, Z. J.; McNamara, W. R.; Eum, M. S.; Holland, P. L.; Eisenberg, R. A nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system. Angew. Chem., Int. Ed. 2012, 51, 1667–1670.

14

Wang, F.; Liang, W. J.; Jian, J. X.; Li, C. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water. Angew. Chem., Int. Ed. 2013, 52, 8134–8138.

15

Chang, C. M.; Orchard, K. L.; Martindale, B. C. M.; Reisner, E. Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water. J. Mater. Chem. A 2016, 4, 2856–2862.

16

Huang, J. E.; Mulfort, K. L.; Du, P. W.; Chen, L. X. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc. 2012, 134, 16472–16475.

17

Zhu, H. M.; Song, N. H.; Lv, H. J.; Hill, C. L.; Lian, T. Q. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 11701–11708.

18

Qiu, F.; Han, Z. J.; Peterson, J. J.; Odoi, M. Y.; Sowers, K. L.; Krauss, T. D. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles. Nano Lett. 2016, 16, 5347–5352.

19

Wang, P.; Wang, M. M.; Zhang, J.; Li, C. P.; Xu, X. L.; Jin, Y. D. Shell thickness engineering significantly boosts the photocatalytic H2 evolution efficiency of CdS/CdSe core/shell quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 35712–35720.

20

Wang, P.; Zhang, J.; He, H. L.; Xu, X. L.; Jin, Y. D. Efficient visible light-driven H2 production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel–sulfur complex. Nanoscale 2014, 6, 13470–13475.

21

Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L. Colloidal hybrid heterostructures based on II–VI semiconductor nanocrystals for photocatalytic hydrogen generation. J. Photochem. Photobiol. C Photochem. Rev. 2014, 19, 52–61.

22

Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

23

Palencia, C.; Yu, K.; Boldt, K. The future of colloidal semiconductor magic-size clusters. ACS Nano 2020, 14, 1227–1235.

24

Bootharaju, M. S.; Baek, W.; Lee, S.; Chang, H.; Kim, J.; Hyeon, T. Magic-sized stoichiometric II–VI nanoclusters. Small 2021, 17, 2002067.

25

Hsieh, T. E.; Yang, T. W.; Hsieh, C. Y.; Huang, S. J.; Yeh, Y. Q.; Chen, C. H.; Li, E. Y.; Liu, Y. H. Unraveling the structure of magic-size (CdSe)13 cluster pairs. Chem. Mater. 2018, 30, 5468–5477.

26

Yang, J.; Muckel, F.; Baek, W.; Fainblat, R.; Chang, H.; Bacher, G.; Hyeon, T. Chemical synthesis, doping, and transformation of magic-sized semiconductor alloy nanoclusters. J. Am. Chem. Soc. 2017, 139, 6761–6770.

27

Gao, Y. K.; Yin, P. G. Effect of bond dispersion on Raman spectra shift in II–VI semiconductor nanocrystals. Inorg. Chem. 2019, 58, 4859–4868.

28

Dmitruk, I.; Belosludov, R. V.; Dmytruk, A.; Noda, Y.; Barnakov, Y.; Park, Y. S.; Kasuya, A. Experimental and computational studies of the structure of CdSe magic-size clusters. J. Phys. Chem. A 2020, 124, 3398–3406.

29

Beecher, A. N.; Yang, X. H.; Palmer, J. H.; LaGrassa, A. L.; Juhas, P.; Billinge, S. J.; Owen, J. S. Atomic structures and gram scale synthesis of three tetrahedral quantum dots. J. Am. Chem. Soc. 2014, 136, 10645–10653.

30

Li, L. J.; Zhang, J.; Zhang, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Lu, J.; Fan, H. S.; Huang, W.; Chen, X. Q. et al. Fragmentation of magic-size cluster precursor compounds into ultrasmall CdS quantum dots with enhanced particle yield at low temperatures. Angew. Chem., Int. Ed. 2020, 59, 12013–12021.

31

Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824.

32

Gao, D.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Lockwood, D. J.; Han, S.; Fan, H. S.; Zhang, H.; Zhang, C. C.; Jiang, Y. N. et al. Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature. Nat. Commun. 2019, 10, 1674.

33

Zhang, H.; Luan, C. R.; Gao, D.; Zhang, M.; Rowell, N.; Willis, M.; Chen, M.; Zeng, J. R.; Fan, H. S.; Huang, W. et al. Room-temperature formation pathway for CdTeSe alloy magic-size clusters. Angew. Chem., Int. Ed. 2020, 59, 16943–16952.

34

Wan, W. S.; Zhang, M.; Zhao, M.; Rowell, N.; Zhang, C. C.; Wang, S. L.; Kreouzis, T.; Fan, H. S.; Huang, W.; Yu, K. Room-temperature formation of CdS magic-size clusters in aqueous solutions assisted by primary amines. Nat. Commun. 2020, 11, 4199.

35

Mule, A. S.; Mazzotti, S.; Rossinelli, A. A.; Aellen, M.; Prins, P. T.; van der Bok, J. C.; Solari, S. F.; Glauser, Y. M.; Kumar, P. V.; Riedinger, A. et al. Unraveling the growth mechanism of magic-sized semiconductor nanocrystals. J. Am. Chem. Soc. 2021, 143, 2037–2048.

36

Ouyang, J. Y.; Zaman, B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 2008, 112, 13805–13811.

37

Kirkwood, N.; Boldt, K. Protic additives determine the pathway of CdSe nanocrystal growth. Nanoscale 2018, 10, 18238–18248.

38

Gary, D. C.; Flowers, S. E.; Kaminsky, W.; Petrone, A.; Li, X. S.; Cossairt, B. M. Single-crystal and electronic structure of a 1. 3 nm indium phosphide nanocluster. J. Am. Chem. Soc. 2016, 138, 1510–1513.

39

Nevins, J. S.; Coughlin, K. M.; Watson, D. F. Attachment of CdSe nanoparticles to TiO2 via aqueous linker-assisted assembly: Influence of molecular linkers on electronic properties and interfacial electron transfer. ACS Appl. Mater. Interfaces 2011, 3, 4242–4253.

40

Baek, W.; Bootharaju, M. S.; Walsh, K. M.; Lee, S.; Gamelin, D. R.; Hyeon, T. Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters. Nat. Mater. 2021, 20, 650–657.

41

Park, Y. S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Aqueous phase synthesized CdSe nanoparticles with well-defined numbers of constituent atoms. J. Phys. Chem. C 2010, 114, 18834–18840.

42

Park, Y. S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Takeda, M.; Ohuchi, N.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y. Size-selective growth and stabilization of small CdSe nanoparticles in aqueous solution. ACS Nano 2010, 4, 121–128.

43

Kurihara, T.; Noda, Y.; Takegoshi, K. Quantitative solid-state NMR study on ligand-surface interaction in cysteine-capped CdSe magic-sized clusters. J. Phys. Chem. Lett. 2017, 8, 2555–2559.

44

Tang, J. B.; Hui, J.; Zhang, M.; Fan, H. S.; Rowell, N.; Huang, W.; Jiang, Y. N.; Chen, X. Q.; Yu, K. CdS magic-size clusters exhibiting one sharp ultraviolet absorption singlet peaking at 361 nm. Nano Res. 2019, 12, 1437–1444.

45

Zhang, B. W.; Zhu, T. T.; Ou, M. Y.; Rowell, N.; Fan, H. S.; Han, J. T.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X. B. et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun. 2018, 9, 2499.

46

Kurihara, T.; Noda, Y.; Takegoshi, K. Capping structure of ligand-cysteine on CdSe magic-sized clusters. ACS Omega 2019, 4, 3476–3483.

47

Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.

48

Li, Q. Y.; Zhao, F. J.; Qu, C.; Shang, Q. Y.; Xu, Z. H.; Yu, L.; McBride, J. R.; Lian, T. Q. Two-dimensional morphology enhances light-driven H2 generation efficiency in CdS nanoplatelet-Pt heterostructures. J. Am. Chem. Soc. 2018, 140, 11726–11734.

49

Qureshi, M.; Takanabe, K. Insights on measuring and reporting heterogeneous photocatalysis: Efficiency definitions and setup examples. Chem. Mater. 2016, 29, 158–167.

50

Kunz, L. Y.; Diroll, B. T.; Wrasman, C. J.; Riscoe, A. R.; Majumdar, A.; Cargnello, M. Artificial inflation of apparent photocatalytic activity induced by catalyst-mass-normalization and a method to fairly compare heterojunction systems. Energy Environ. Sci. 2019, 12, 1657–1667.

51

Cao, S.; Piao, L. Y. Considerations for a more accurate evaluation method for photocatalytic water splitting. Angew. Chem., Int. Ed. 2020, 59, 18312–18320.

52

Melchionna, M.; Fornasiero, P. Updates on the roadmap for photocatalysis. ACS Catal. 2020, 10, 5493–5501.

53

Chen, Z.; Fan, T. T.; Yu, X.; Wu, Q. L.; Zhu, Q. H.; Zhang, L. Z.; Li, J. H.; Fang, W. P.; Yi, X. D. Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 15310–15319.

54

Ben-Shahar, Y.; Scotognella, F.; Waiskopf, N.; Kriegel, I.; Dal Conte, S.; Cerullo, G.; Banin, U. Effect of surface coating on the photocatalytic function of hybrid CdS-Au nanorods. Small 2015, 11, 462–471.

55

Gao, Y. J.; Li, X. B.; Wu, H. L.; Meng, S. L.; Fan, X. B.; Huang, M. Y.; Guo, Q.; Tung, C. H.; Wu, L. Z. Exceptional catalytic nature of quantum dots for photocatalytic hydrogen evolution without external cocatalysts. Adv. Funct. Mater. 2018, 28, 1801769.

56

Gao, Y. J.; Li, X. B.; Wang, X. Z.; Zhao, N. J.; Zhao, Y. F.; Wang, Y.; Xin, Z. K.; Zhang, J. P.; Zhang, T. R.; Tung, C. H. et al. Site- and spatial-selective integration of non-noble metal ions into quantum dots for robust hydrogen photogeneration. Matter 2020, 3, 571–585.

57

Murali, K. R.; Balasubramanian, M. Characteristics of pulse plated CdxZn1−xSe films. Curr. Appl. Phys. 2010, 10, 734–739.

58

Kundu, B.; Chakrabarti, S.; Pal, A. J. Redox levels of dithiols in II–VI quantum dots vis-à-vis photoluminescence quenching: Insight from scanning tunneling spectroscopy. Chem. Mater. 2014, 26, 5506–5513.

59

Desrochers, P. J.; Duong, D. S.; Marshall, A. S.; Lelievre, S. A.; Hong, B.; Brown, J. R.; Tarkka, R. M.; Manion, J. M.; Holman, G.; Merkert, J. W. et al. Nickel-cysteine binding supported by phosphine chelates. Inorg. Chem. 2007, 46, 9221–9233.

File
12274_2021_3983_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 September 2021
Revised: 02 November 2021
Accepted: 07 November 2021
Published: 12 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21675146) and the National Key Research and Development Program of China (No. 2016YFA0201300).

Return