Journal Home > Volume 15 , Issue 3

Photocatalytic water splitting (PWS) has attracted widespread attention as a sustainable method for converting solar to green hydrogen energy. So far PWS research has mainly focused on the development of artificial photocatalytic hydrogen production systems for pure water. It is more practically attractive to create systems for seawater, i.e., to reduce the cost of hydrogen production and make better use of naturally occurring water resources. Herein, brookite, anatase, and rutile TiO2 nanoparticles are investigated as photocatalysts to explore the feasibility of such thought and have shown attractive hydrogen production performance under full solar spectrum without any sacrificial agent. It is worth noting that, brookite TiO2, has more suitable band gap position and excellent photoelectric properties compared with anatase and rutile TiO2, and has higher efficiency and stability in the process of hydrogen production. The photocatalytic hydrogen production rate of brookite TiO2 can reach up to 1,476 μmol/g/h, the highest value reported for TiO2-based systems and most other photocatalysts in seawater splitting under full spectrum. As the Cl ions in seawater go through a cycle of oxidation and reduction, no Cl2 is detected in the solar hydrogen production from seawater.


menu
Abstract
Full text
Outline
About this article

Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles

Show Author's information Jining Zhang1,2,§Yifan Lei1,2,§Shuang Cao1,§Wenping Hu2( )Lingyu Piao1,3( )Xiaobo Chen4( )
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing 100190, China
School of Science, Tianjin University, Tianjin 300072, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Chemistry, University of Missouri–Kansas City, MO 64110, USA

§Jining Zhang, Yifan Lei, and Shuang Cao contributed equally to this work.

Abstract

Photocatalytic water splitting (PWS) has attracted widespread attention as a sustainable method for converting solar to green hydrogen energy. So far PWS research has mainly focused on the development of artificial photocatalytic hydrogen production systems for pure water. It is more practically attractive to create systems for seawater, i.e., to reduce the cost of hydrogen production and make better use of naturally occurring water resources. Herein, brookite, anatase, and rutile TiO2 nanoparticles are investigated as photocatalysts to explore the feasibility of such thought and have shown attractive hydrogen production performance under full solar spectrum without any sacrificial agent. It is worth noting that, brookite TiO2, has more suitable band gap position and excellent photoelectric properties compared with anatase and rutile TiO2, and has higher efficiency and stability in the process of hydrogen production. The photocatalytic hydrogen production rate of brookite TiO2 can reach up to 1,476 μmol/g/h, the highest value reported for TiO2-based systems and most other photocatalysts in seawater splitting under full spectrum. As the Cl ions in seawater go through a cycle of oxidation and reduction, no Cl2 is detected in the solar hydrogen production from seawater.

Keywords: hydrogen production, photocatalytic seawater splitting, titanium dioxide (TiO2) photocatalyst

References(65)

1

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

2

Chen, Y. C.; Huang, Y. S.; Huang, H.; Su, P. J.; Perng, T. P.; Chen, L. J. Photocatalytic enhancement of hydrogen production in water splitting under simulated solar light by band gap engineering and localized surface plasmon resonance of ZnxCd1−xS nanowires decorated by Au nanoparticles. Nano Energy 2020, 67, 104225.

3

She, X. J.; Wu, J. J.; Xu, H.; Zhong, J.; Wang, Y.; Song, Y. H.; Nie, K. Q.; Liu, Y.; Yang, Y. C.; Rodrigues, M. T. F. et al. High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv. Energy Mater. 2017, 7, 1700025.

4

Lin, L. H.; Yu, Z. Y.; Wang, X. C. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 131, 6225–6236.

5

Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

6

Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

7

Guan, X. J.; Chowdhury, F. A.; Pant, N.; Guo, L. J.; Vayssieres, L.; Mi, Z. T. Efficient unassisted overall photocatalytic seawater splitting on GaN-based nanowire arrays. J. Phys. Chem. C 2018, 122, 13797–13802.

8

Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125.

9

Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

10

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

11

Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

12

Ichikawa, S. Photoelectrocatalytic production of hydrogen from natural seawater under sunlight. Int. J. Hydrogen Energy 1997, 22, 675–678.

13

DeepanPrakash, D.; Premnath, V.; Raghu, C.; Vishnukumar, S.; Jayanthi, S. S.; Easwaramoorthy, D. Harnessing power from sea water using nano material as photocatalyst and solar energy as light source: The role of hydrocarbon as dual agent. Int. J. Energy Res. 2014, 38, 249–253.

14

Yang, T. C.; Chang, F. C.; Wang, H. P.; Wei, Y. L.; Jou, C. J. Photocatalytic splitting of seawater effected by (Ni-ZnO)@C nanoreactors. Mar. Poll. Bull. 2014, 85, 696–699.

15

Yang, L.; Nandakumar, D. K.; Miao, L. Q.; Suresh, L.; Zhang, D. W.; Xiong, T.; Vaghasiya, J. V.; Kwon, K. C.; Tan, S. C. Energy harvesting from atmospheric humidity by a hydrogel-integrated ferroelectric-semiconductor system. Joule 2020, 4, 176–188.

16

Yang, L.; Ravi, S. K.; Nandakumar, D. K.; Alzakia, F. I.; Lu, W. H.; Zhang, Y. X.; Yang, J. C.; Zhang, Q.; Zhang, X. P.; Tan, S. C. A hybrid artificial photocatalysis system splits atmospheric water for simultaneous dehumidification and power generation. Adv. Mater. 2019, 31, 1902963.

17

Yang, L.; Loh, L.; Nandakumar, D. K.; Lu, W. H.; Gao, M. Q.; Le Charlotte Wee, X.; Zeng, K. Y.; Bosman, M.; Tan, S. C. Sustainable fuel production from ambient moisture via ferroelectrically driven MoS2 nanosheets. Adv. Mater. 2020, 32, 2000971.

18

Jiang, L.; Luo, Z. F.; Li, Y. Z.; Wang, W.; Li, J. J.; Li, J.; Ao, Y. L.; He, J.; Sharma, V. K.; Wang, J. Morphology- and phase-controlled synthesis of visible-light-activated S-doped TiO2 with tunable S4+/S6+ ratio. Chem. Eng. J. 2020, 402, 125549.

19

Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.

20

Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S. C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B:Environ. 2019, 244, 1021–1064.

21

Reddy, N. R.; Bharagav, U.; Kumari, M. M.; Cheralathan, K. K.; Shankar, M. V.; Reddy, K. R.; Saleh, T. A.; Aminabhavi, T. M. Highly efficient solar light-driven photocatalytic hydrogen production over Cu/FCNTs-titania quantum dots-based heterostructures. J. Environ. Manage. 2020, 254, 109747.

22

Xu, Y.; Lin, H.; Li, L.; Huang, X.; Li, G. Precursor-directed synthesis of well-faceted brookite TiO2 single crystals for efficient photocatalytic performances. J. Mater. Chem. A 2015, 3, 22361–22368.

23

Li, Z.; Tian, B.; Zhen, W. L.; Wu, Y. Q.; Lu, G. X. Inhibition of hydrogen and oxygen recombination using oxygen transfer reagent hemin chloride in Pt/TiO2 dispersion for photocatalytic hydrogen generation. Appl. Catal. B:Environ. 2017, 203, 408–415.

24

Liu, H. R.; Raza, A.; Aili, A.; Lu, J. Y.; AlGhaferi, A.; Zhang, T. J. Sunlight-sensitive anti-fouling nanostructured TiO2 coated Cu meshes for ultrafast oily water treatment. Sci. Rep. 2016, 6, 25414.

25

Naldoni, A.; Montini, T.; Malara, F.; Mroóz, M. M.; Beltram, A.; Virgili, T.; Boldrini, C. L.; Marelli, M.; Romero-Ocaña, I.; Delgado, J. J. et al. Hot electron collection on brookite nanorods lateral facets for plasmon-enhanced water oxidation. ACS Catal. 2017, 7, 1270–1278.

26

Liu, M.; Zhong, M.; Li, H. M.; Piao, L. Y.; Wang, W. J. Facile synthesis of hollow TiO2 single nanocrystals with improved photocatalytic and photoelectrochemical activities. ChemPlusChem 2015, 80, 688–696.

27

Hanaor, D. A. H.; Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874.

28

Tompsett, G. A.; Bowmaker, G. A.; Cooney, R. P.; Metson, J. B.; Rodgers, K. A.; Seakins, J. M. The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J. Raman Spectrosc. 1995, 26, 57–62.

29

Khalily, M. A.; Eren, H.; Akbayrak, S.; Susapto, H. H.; Biyikli, N.; Özkar, S.; Guler, M. O. Facile synthesis of three-dimensional Pt-TiO2 nano-networks: A highly active catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew. Chem., Int. Ed. 2016, 55, 12257–12261.

30

Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

31

Xu, F. Y.; Xiao, W.; Cheng, B.; Yu, J. G. Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity. Int. J. Hydrogen Energy 2014, 39, 15394–15402.

32

Wang, L. C.; Cao, S.; Guo, K.; Wu, Z. J.; Ma, Z.; Piao, L. Y. Simultaneous hydrogen and peroxide production by photocatalytic water splitting. Chin. J. Catal. 2019, 40, 470–475.

33

Wang, D. D.; Li, Q. J.; Miao, W.; Liu, Y.; Du, N. J.; Mao, S. One-pot synthesis of ultrafine NiO loaded and Ti3+ in-situ doped TiO2 induced by cyclodextrin for efficient visible-light photodegradation of hydrophobic pollutants. Chem. Eng. J. 2020, 402, 126211.

34

Li, J.; Liu, C. H.; Li, X.; Wang, Z. Q.; Shao, Y. C.; Wang, S. D.; Sun, X. L.; Pong, W. F.; Guo, J. H.; Sham, T. K. Unraveling the origin of visible light capture by core–shell TiO2 nanotubes. Chem. Mater. 2016, 28, 4467–4475.

35

Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.

36

Liu, J. H.; Zhang, Y. W.; Lu, L. H.; Wu, G.; Chen, W. Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles. Chem. Commun. 2012, 48, 8826–8828.

37

Zhu, C.; Liu, C. A.; Fu, Y. J.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl. Catal. B:Environ. 2019, 242, 178–185.

38

Ivanova, I.; Kandiel, T. A.; Cho, Y. J.; Choi, W.; Bahnemann, D. Mechanisms of photocatalytic molecular hydrogen and molecular oxygen evolution over La-doped NaTaO3 particles: Effect of different cocatalysts and their specific activity. ACS Catal. 2018, 8, 2313–2325.

39

Chen, W.; Wang, Y. H.; Liu, M.; Gao, L.; Mao, L. Q.; Fan, Z. Y.; Shangguan, W. F. In situ photodeposition of cobalt on CdS nanorod for promoting photocatalytic hydrogen production under visible light irradiation. Appl. Surf. Sci. 2018, 444, 485–490.

40

Simamora, A. J.; Hsiung, T. L.; Chang, F. C.; Yang, T. C.; Liao, C. Y.; Wang, H. P. Photocatalytic splitting of seawater and degradation of methylene blue on CuO/nano TiO2. Int. J. Hydrogen Energy 2012, 37, 13855–13858.

41

Simamora, A. J.; Chang, F. C.; Wang, H. P.; Yang, T. C.; Wei, Y. L.; Lin, W. K. H2 fuels from photocatalytic splitting of seawater affected by nano-TiO2 promoted with CuO and NiO. Int. J. Photoenergy 2013, 2013, 419182.

42

Sakurai, H.; Kiuchi, M.; Jin, T. Pt/TiO2 granular photocatalysts for hydrogen production from aqueous glycerol solution: Durability against seawater constituents and dissolved oxygen. Catal. Commun. 2018, 114, 124–128.

43

Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Pisanu, A.; Malavasi, L.; Profumo, A. Improved photocatalytic H2 production assisted by aqueous glucose biomass by oxidized g-C3N4. Int. J. Hydrogen Energy 2018, 43, 14925–14933.

44

Yu, J. C.; Zhang, L. Z.; Yu, J. G. Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chem. Mater. 2002, 14, 4647–4653.

45

Ding, Z.; Lu, G. Q.; Greenfield, P. F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. J. Phys. Chem. B 2000, 104, 4815–4820.

46

Cai, J. M.; Wang, Y. T.; Zhu, Y. M.; Wu, M. Q.; Zhang, H.; Li, X. G.; Jiang, Z.; Meng, M. In situ formation of disorder-engineered TiO2(B)-anatase heterophase junction for enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2015, 7, 24987–24992.

47

Cai, J. M.; Wu, M. Q.; Wang, Y. T.; Zhang, H.; Meng, M.; Tian, Y.; Li, X. G.; Zhang, J.; Zheng, L. R.; Gong, J. L. Synergetic enhancement of light harvesting and charge separation over surface-disorder-engineered TiO2 photonic crystals. Chem 2017, 2, 877–892.

48

Xie, S. L.; Li, M. Y.; Wei, W. J.; Zhai, T.; Fang, P. P.; Qiu, R. L.; Lu, X. H.; Tong, Y. X. Gold nanoparticles inducing surface disorders of titanium dioxide photoanode for efficient water splitting. Nano Energy 2014, 10, 313–321.

49

Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

50

Shi, R.; Ye, H. F.; Liang, F.; Wang, Z.; Li, K.; Weng, Y. X.; Lin, Z. S.; Fu, W. F.; Che, C. M.; Chen, Y. Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents. Adv. Mater. 2018, 30, 1705941.

51

Wang, J. J.; Li, Z. J.; Li, X. B.; Fan, X. B.; Meng, Q. Y.; Yu, S.; Li, C. B.; Li, J. X.; Tung, C. H.; Wu, L. Z. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation. ChemSusChem 2014, 7, 1468–1475.

52

Yu, J. G.; Dai, G. P.; Huang, B. B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J. Phys. Chem. C 2009, 113, 16394–16401.

53

Li, Q. Y.; Zhang, J. W.; Jin, Z. S.; Yang, D. G.; Wang, X. D.; Yang, J. J.; Zhang, Z. J. Photo and photoelectrochemical properties of p-type low-temperature dehydrated nanotube titanic acid. Electrochem. Commun. 2006, 8, 741–746.

54

Hou, L. L.; Zhang, M.; Guan, Z. J.; Li, Q. Y.; Yang, J. J. Effect of annealing ambience on the formation of surface/bulk oxygen vacancies in TiO2 for photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018, 428, 640–647.

55

Wu, Z. J.; Guo, K.; Cao, S.; Yao, W. Q.; Piao, L. Y. Synergetic catalysis enhancement between H2O2 and TiO2 with single-electron-trapped oxygen vacancy. Nano Res. 2020, 13, 551–556.

56

Liu, L. J.; Zhao, H. L.; Andino, J. M.; Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2012, 2, 1817–1828.

57

Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 2011, 115, 7355–7363.

58

Yu, J. C.; Yu, J. G.; Ho, W.; Jiang, Z. T.; Zhang, L. Z. Effects of F doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 2002, 14, 3808–3816.

59

Fujihara, K.; Izumi, S.; Ohno, T.; Matsumura, M. Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions. J. Photochem. Photobiol. A:Chem. 2000, 132, 99–104.

60

Zhang, Z. B.; Wang, C. C.; Zakaria, R.; Ying, J. Y. Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 1998, 102, 10871–10878.

61

Luo, W.; Yang, Z.; Li, Z.; Zhang, J.; Liu, J.; Zhao, Z.; Wang, Z.; Yan, S.; Yu, T.; Zou, Z. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 2011, 4, 4046–4051.

62

Ji, S. M.; Jun, H.; Jang, J. S.; Son, H. C.; Borse, P. H.; Lee, J. S. Photocatalytic hydrogen production from natural seawater. J. Photochem. Photobiol. A:Chem. 2007, 189, 141–144.

63

Ayyub, M. M.; Chhetri, M.; Gupta, U.; Roy, A.; Rao, C. N. R. Photochemical and photoelectrochemical hydrogen generation by splitting seawater. Chem. -Eur. J. 2018, 24, 18455–18462.

64

Cao, S.; Chan, T. S.; Lu, Y. R.; Shi, X. H.; Fu, B.; Wu, Z. J.; Li, H. M.; Liu, K.; Alzuabi, S.; Cheng, P. et al. Photocatalytic pure water splitting with high efficiency and value by Pt/porous brookite TiO2 nanoflutes. Nano Energy 2020, 67, 104287.

65

Diesen, V.; Jonsson, M. Formation of H2O2 in TiO2 photocatalysis of oxygenated and deoxygenated aqueous systems: A probe for photocatalytically produced hydroxyl radicals. J. Phys. Chem. C 2014, 118, 10083–10087.

Publication history
Copyright
Acknowledgements

Publication history

Received: 09 September 2021
Revised: 30 October 2021
Accepted: 07 November 2021
Published: 10 December 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge the financial support by the National Natural Science Foundation of China (No. 21972028) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000). We also thank the support from the School of Biological and Chemical Sciences, University of Missouri–Kansas City.

Return