Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Solid lithium-sulfur batteries (SLSBs) show potential for practical application due to their possibility for high energy density. However, SLSBs still face tough challenges such as the large interface impedance and lithium dendrite formation. Herein, a high-performance SLSB is demonstrated by using a fiber network reinforced Li6.75La3Zr1.75Ta0.25O12 (LLZTO) based composite solid electrolyte (CSE) in combination with sulfurized polyacrylonitrile (SPAN) cathode. The CSE consisting of an electrospun polyimide (PI) film, LLZTO ionically conducting filler and polyacrylonitrile (PAN) matrix, which is named as PI-PAN/LLZTO CSE, possesses high room-temperature ionic conductivity (2.75 × 10−4 S/cm), high Li+ migration number (tLi+) of 0.67 and good interfacial wettability. SPAN is utilized due to its unique electrochemical properties: reasonable electronic conductivity and no polysulfides shuttle effect. The CSE enables a highly stable Li plating/stripping cycle for over 600 h and good rate performance. Moreover, the assembled SLSB exhibits good cycle performance of accomplishing 120 cycles at 0.2 C with the capacity retention of 474 mAh/g, good rate properties and excellent long-term cycling stability with a high capacity retention of 86.49% from 15th to 1,000th cycles at 1.0 C. This work rationalizes our design concept and may guide the future development of SLSBs.
Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278.
Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.
Luo, S. Q.; Zheng, C. M.; Sun, W. W.; Xie, W.; Ke, J. H.; Liu, S. K.; Hong, X. B.; Li, Y. J.; Xu, J. Controllable preparation of Co-NC Nanoporous carbon derived from ZIF-67 for advanced lithium-sulfur batteries. J. Inorg. Mater. 2019, 34, 502–508.
Luo, S. Q.; Sun, W. W.; Ke, J. H.; Wang, Y. Q.; Liu, S. K.; Hong, X. B.; Li, Y. J.; Chen, Y. F.; Xie, W.; Zheng, C. M. A 3D conductive network of porous carbon nanoparticles interconnected with carbon nanotubes as the sulfur host for long cycle life lithium-sulfur batteries. Nanoscale 2018, 10, 22601–22611.
Betz, J.; Bieker, G.; Meister, P.; Placke, T.; Winter, M.; Schmuch, R. Theoretical versus practical energy: A plea for more transparency in the energy calculation of different rechargeable battery systems. Adv. Energy Mater. 2019, 9, 1803170.
Chen, L.; Fan, L. Z. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte. Energy Storage Mater. 2018, 15, 37–45.
Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.
Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.
Li, M. R.; Frerichs, J. E.; Kolek, M.; Sun, W.; Zhou, D.; Huang, C. J.; Hwang, B. J.; Hansen, M. R.; Winter, M.; Bieker, P. Solid-state lithium-sulfur battery enabled by thio-LiSICON/Polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 2020, 30, 1910123.
Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.
Lei, D. N.; Shi, K.; Ye, H.; Wan, Z. P.; Wang, Y. Y.; Shen, L.; Li, B. H.; Yang, Q. H.; Kang, F. Y.; He, Y. B. Progress and perspective of solid-state lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707570.
Kumar, R.; Liu, J.; Hwang, J. Y.; Sun, Y. K. Recent research trends in Li-S batteries. J. Mater. Chem. A 2018, 6, 11582–11605.
Umeshbabu, E.; Zheng, B. Z.; Yang, Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem. Energy Rev. 2019, 2, 199–230.
Luo, S. Q.; Zhao, E. Y.; Gu, Y. X.; Huang, J.; Zhang, Z. X.; Yang, L.; Hirano, S. I. Rational design of fireproof fiber-network reinforced 3D composite solid electrolyte for dendrite-free solid-state batteries. Chem. Eng. J. 2021, 421, 127771.
Samson, A. J.; Hofstetter, K.; Bag, S.; Thangadurai, V. A bird's-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ. Sci. 2019, 12, 2957–2975.
Chen, S. J.; Xie, D. J.; Liu, G. Z.; Mwizerwa, J. P.; Zhang, Q.; Zhao, Y. R.; Xu, X. X.; Yao, X. Y. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Mater. 2018, 14, 58–74.
Wu, B. B.; Wang, S. Y.; Lochala, J.; Desrochers, D.; Liu, B.; Zhang, W. Q.; Yang, J. H.; Xiao, J. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 2018, 11, 1803–1810.
Cheng, E. J.; Sharafi, A.; Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 2017, 223, 85–91.
Judez, X.; Zhang, H.; Li, C. M.; Eshetu, G. G.; González-Marcos, J. A.; Armand, M.; Rodriguez-Martinez, L. M. Review-solid electrolytes for safe and high energy density lithium-sulfur batteries: Promises and challenges. J. Electrochem. Soc. 2017, 165, A6008–A6016.
Wang, Y.; Wang, G. X.; He, P. G.; Hu, J. K.; Jiang, J. H.; Fan, L. Z. Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries. Chem. Eng. J. 2020, 393, 124705.
Hu, J. K.; He, P. G.; Zhang, B. C.; Wang, B. Y.; Fan, L. Z. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 2020, 26, 283–289.
Liao, Z.; Huang, J.; Chen, W. T.; Saito, N.; Zhang, Z. X.; Yang, L.; Hirano, S. I. Safe, superionic conductive and flexible “polymer-in-plastic salts” electrolytes for dendrite-free lithium metal batteries. Energy Storage Mater. 2020, 33, 442–451.
Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184.
Gao, Y.; Yan, Z. F.; Gray, J. L.; He, X.; Wang, D. W.; Chen, T. H.; Huang, Q. Q.; Li, Y. C.; Wang, H. Y.; Kim, S. H. et al. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 2019, 18, 384–389.
Li, D.; Chen, L.; Wang, T. S.; Fan, L. Z. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 7069–7078.
Ohno, S.; Koerver, R.; Dewald, G.; Rosenbach, C.; Titscher, P.; Steckermeier, D.; Kwade, A.; Janek, J.; Zeier, W. G. Observation of chemomechanical failure and the influence of cutoff potentials in all-solid-state Li-S batteries. Chem. Mater. 2019, 31, 2930–2940.
Koerver, R.; Zhang, W. B.; De Biasi, L.; Schweidler, S.; Kondrakov, A. O.; Kolling, S.; Brezesinski, T.; Hartmann, P.; Zeier, W. G.; Janek, J. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 2018, 11, 2142–2158.
Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 2002, 14, 13–14.
Zhang, W.; Zhang, Y. Y.; Peng, L. F.; Li, S. P.; Wang, X. M.; Cheng, S. J.; Xie, J. Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating. Nano Energy 2020, 76, 105083.
Wang, W. X.; Cao, Z.; Elia, G. A.; Wu, Y. Q.; Wahyudi, W.; Abou-Hamad, E.; Emwas, A. H.; Cavallo, L.; Li, L. J.; Ming, J. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries. ACS Energy Lett. 2018, 3, 2899–2907.
Zhang, S. S. Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 2014, 7, 4588–4600.
Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem., Int. Ed. 2007, 46, 7778–7781.
Huo, H. Y.; Chen, Y.; Luo, J.; Yang, X. F.; Guo, X. X.; Sun, X. L. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv. Energy Mater. 2019, 9, 1804004.
Warneke, S.; Eusterholz, M.; Zenn, R. K.; Hintennach, A.; Dinnebier, R. E.; Buchmeiser, M. R. Differences in electrochemistry between fibrous SPAN and fibrous S/C cathodes relevant to cycle stability and capacity. J. Electrochem. Soc. 2018, 165, A6017–A6020.
Wang, J.; Yang, J.; Wan, C.; Du, K.; Xie, J.; Xu, N. Sulfur composite cathode materials for rechargeable lithium batteries. Adv. Funct. Mater. 2003, 13, 487–492.
Li, Y.; Zhang, W.; Dou, Q. Q.; Wong, K. W.; Ng, K. M. Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J. Mater. Chem. A 2019, 7, 3391–3398.
Huang, Z. Y.; Pang, W. Y.; Liang, P.; Jin, Z. H.; Grundish, N.; Li, Y. T.; Wang, C. A. A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: Enhanced thermal and electrochemical properties. J. Mater. Chem. A 2019, 7, 16425–16436.
Han, F. D.; Zhu, Y. Z.; He, X. F.; Mo, Y. F.; Wang, C. S. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590.
Wang, P.; Chai, J. C.; Zhang, Z. H.; Zhang, H. R.; Ma, Y.; Xu, G. J.; Du, H. P.; Liu, T. M.; Li, G. C.; Cui, G. L. An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. J. Mater. Chem. A 2019, 7, 5295–5304.
Wang, Z. Q.; Wang, Z. J.; Yang, L. Y.; Wang, H. B.; Song, Y. L.; Han, L.; Yang, K.; Hu, J. T.; Chen, H. B.; Pan, F. Boosting interfacial Li+ transport with a MOF-based ionic conductor for solid-state batteries. Nano Energy 2018, 49, 580–587.
He, Y. B.; Liu, N.; Kohl, P. A. High conductivity, lithium ion conducting polymer electrolyte based on hydrocarbon backbone with pendent carbonate. J. Electrochem. Soc. 2020, 167, 100517.
Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 11069–11074.
Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide). Nano Lett. 2016, 16, 459–465.
Wu, H.; Wang, J. L.; Zhao, Y.; Zhang, X. Q.; Xu, L.; Liu, H.; Cui, Y. X.; Cui, Y. H.; Li, C. L. A branched cellulose-reinforced composite polymer electrolyte with upgraded ionic conductivity for anode stabilized solid-state Li metal batteries. Sustainable Energy Fuels 2019, 3, 2642–2656.
Cao, Z. J.; Li, B.; Yang, S. B. Dendrite-free lithium anodes with ultra-deep stripping and plating properties based on vertically oriented lithium-copper-lithium arrays. Adv. Mater. 2019, 31, 1901310.
Yang, X. F.; Gao, X. J.; Zhao, C. T.; Sun, Q.; Zhao, Y.; Adair, K.; Luo, J.; Lin, X. T.; Liang, J. N.; Huang, H. et al. Suppressed dendrite formation realized by selective Li deposition in all-solid-state lithium batteries. Energy Storage Mater. 2020, 27, 198–204.
Nagao, M.; Imade, Y.; Narisawa, H.; Kobayashi, T.; Watanabe, R.; Yokoi, T.; Tatsumi, T.; Kanno, R. All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. J. Power Sources 2013, 222, 237–242.
Nagao, M.; Hayashi, A.; Tatsumisago, M. Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte. Electrochim. Acta 2011, 56, 6055–6059.
Suzuki, K.; Mashimo, N.; Ikeda, Y.; Yokoi, T.; Hirayama, M.; Kanno, R. High cycle capability of all-solid-state lithium-sulfur batteries using composite electrodes by liquid-phase and mechanical mixing. ACS Appl. Energy Mater. 2018, 1, 2373–2377.
Agostini, M.; Aihara, Y.; Yamada, T.; Scrosati, B.; Hassoun, J. A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte. Solid State Ionics 2013, 244, 48–51.
Yamada, T.; Ito, S.; Omoda, R.; Watanabe, T.; Aihara, Y.; Agostini, M.; Ulissi, U.; Hassoun, J.; Scrosati, B. All solid-state lithium-sulfur battery using a glass-type P2S5-Li2S electrolyte: Benefits on anode kinetics. J. Electrochem. Soc. 2015, 162, A646–A651.
Sun, W. W.; Li, Y. J.; Liu, S. K.; Guo, Q. P.; Zhu, Y. H.; Hong, X. B.; Zheng, C. M.; Xie, K. Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143–2148.
Sun, W. W.; Li, Y. J.; Liu, S. K.; Liu, C.; Tan, X. J.; Xie, K. Mechanism investigation of iron selenide as polysulfide mediator for long-life lithium-sulfur batteries. Chem. Eng. J. 2021, 416, 129166.