Journal Home > Volume 15 , Issue 4

Interferon-γ (IFN-γ), secreted by activated T cells predominantly, plays a crucial performance in the tumoricidal immune response. Unfortunately, a high level of IFN-γ severely ignites the immunosuppressive response, especially by increasing the expression of immune checkpoint programmed death-ligand 1 (PD-L1) and immunoregulatory enzyme indoleamine 2,3-dioxygenase 1 (IDO-1). Herein, we have explored a versatile IFN-γ-nano-integrator (aPD-L1-SH@Ce6@NLG919-PEG, simplified as CNDP) to establish a positive anti-tumor feedback loop to amplify the IFN-γ-mediated tumoricidal effect. In this nano-integrator, photosensitizer chlorin e6 (Ce6) mediates photodynamic therapy (PDT) to re-shape immunogenicity and activate the adaptive immune response, followed by the secretion of high-level IFN-γ to struggle tumor cells. IDO-1 inhibitor (NLG919) afterwards mitigates the immunosuppressive behavior of IFN-γ by neutralizing the function of IDO-1. To turn “waste” into wealth, anti-PD-L1 (aPD-L1) antibodies are technically integrated into the nano-integrator to propel the precise attack of breast cancer through ascending PD-L1 blockade. Together, this “three musketeers” nano-integrator tumoricidal tactic may give a unique insight into the clinical anti-tumor therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A “three musketeers” tactic for inclining interferon-γ as a comrade-in-arm to reinforce the synergistic-tumoricidal therapy

Show Author's information Wenxi Li1,2,§Lisi Xie1,2,§Yi Ju3Zhan Zhang1,2Bei Li1,2Jie Li1,2Wei Sang1,2Guohao Wang1,2Hao Tian1,2Yunlu Dai1,2( )
Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia

§ Wenxi Li and Lisi Xie contributed equally to this work.

Abstract

Interferon-γ (IFN-γ), secreted by activated T cells predominantly, plays a crucial performance in the tumoricidal immune response. Unfortunately, a high level of IFN-γ severely ignites the immunosuppressive response, especially by increasing the expression of immune checkpoint programmed death-ligand 1 (PD-L1) and immunoregulatory enzyme indoleamine 2,3-dioxygenase 1 (IDO-1). Herein, we have explored a versatile IFN-γ-nano-integrator (aPD-L1-SH@Ce6@NLG919-PEG, simplified as CNDP) to establish a positive anti-tumor feedback loop to amplify the IFN-γ-mediated tumoricidal effect. In this nano-integrator, photosensitizer chlorin e6 (Ce6) mediates photodynamic therapy (PDT) to re-shape immunogenicity and activate the adaptive immune response, followed by the secretion of high-level IFN-γ to struggle tumor cells. IDO-1 inhibitor (NLG919) afterwards mitigates the immunosuppressive behavior of IFN-γ by neutralizing the function of IDO-1. To turn “waste” into wealth, anti-PD-L1 (aPD-L1) antibodies are technically integrated into the nano-integrator to propel the precise attack of breast cancer through ascending PD-L1 blockade. Together, this “three musketeers” nano-integrator tumoricidal tactic may give a unique insight into the clinical anti-tumor therapy.

Keywords: interferon-γ (IFN-γ), anti-PD-L1 (aPD-L1), IDO-1 inhibitor (NLG919), neutralization, tumoricidal, positive anti-tumor feedback loop

References(56)

1

Vesely, M. D.; Kershaw, M. H.; Schreiber, R. D.; Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 2011, 29, 235–271.

2

Spitzer, M. H.; Carmi, Y.; Reticker-Flynn, N. E.; Kwek, S. S.; Madhireddy, D.; Martins, M. M.; Gherardini, P. F.; Prestwood, T. R.; Chabon, J.; Bendall, S. C. et al. Systemic immunity is required for effective cancer immunotherapy. Cell 2017, 168, 487–502.e15.

3

Liu, D.; Schilling, B.; Liu, D.; Sucker, A.; Livingstone, E.; Jerby-Arnon, L.; Zimmer, L.; Gutzmer, R.; Satzger, I.; Loquai, C. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 2019, 25, 1916–1927.

4

Colvin, R. A.; Campanella, G. S. V.; Sun, J. T.; Luster, A. D. Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J. Biol. Chem. 2004, 279, 30219–30227.

5

Liu, Z. Q.; Ravindranathan, R.; Li, J.; Kalinski, P.; Guo, Z. S.; Bartlett, D. L. CXCL11-armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. OncoImmunology 2016, 5, e1091554.

6

Bhat, P.; Leggatt, G.; Waterhouse, N.; Frazer, I. H. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 2017, 8, e2836.

7

Dunn, G. P.; Koebel, C. M.; Schreiber, R. D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 2006, 6, 836–848.

8

Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008, 8, 59–73.

9

Grassberger, C.; Ellsworth, S. G.; Wilks, M. Q.; Keane, F. K.; Loeffler, J. S. Assessing the interactions between radiotherapy and antitumour immunity. Nat. Rev. Clin. Oncol. 2019, 16, 729–745.

10

Lee, E. J.; Nam, G. H.; Lee, N. K.; Kih, M.; Koh, E.; Kim, Y. K.; Hong, Y.; Kim, S.; Park, S. Y.; Jeong, C. et al. Nanocage-therapeutics prevailing phagocytosis and immunogenic cell death awakens immunity against cancer. Adv. Mater. 2018, 30, 1705581.

11

Nam, J.; Son, S.; Ochyl, L. J.; Kuai, R.; Schwendeman, A.; Moon, J. J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9, 1074.

12

Demaria, M.; O’Leary, M. N.; Chang, J. H.; Shao, L. J.; Liu, S.; Alimirah, F.; Koenig, K.; Le, C.; Mitin, N.; Deal, A. M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017, 7, 165–176.

13

Hassett, M. J.; O'Malley, A. J.; Pakes, J. R.; Newhouse, J. P.; Earle, C. C. Frequency and cost of chemotherapy-related serious adverse effects in a population sample of women with breast cancer. J. Natl. Cancer Inst. 2006, 98, 1108–1117.

14

Hubenak, J. R.; Zhang, Q. X.; Branch, C. D.; Kronowitz, S. J. Mechanisms of injury to normal tissue after radiotherapy: A review. Plast. Reconstr. Surg. 2014, 133, 49e–56e.

15

Feng, B.; Niu, Z. F.; Hou, B.; Zhou, L.; Li, Y. P.; Yu, H. J. Enhancing triple negative breast cancer immunotherapy by ICG-templated self-assembly of paclitaxel nanoparticles. Adv. Funct. Mater. 2020, 30, 1906605.

16

Castano, A. P.; Mroz, P.; Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535–545.

17

Phuengkham, H.; Ren, L.; Shin, I. W.; Lim, Y. T. Nanoengineered immune niches for reprogramming the immunosuppressive tumor microenvironment and enhancing cancer immunotherapy. Adv. Mater. 2019, 31, 1803322.

18

Irvine, D. J.; Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 2020, 20, 321–334.

19

Sang, W.; Zhang, Z.; Dai, Y. L.; Chen, X. Y. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem. Soc. Rev. 2019, 48, 3771–3810.

20
Gocher, A. M.; Workman, C. J.; Vignali, D. A. A. Interferon-γ: Teammate or opponent in the tumour microenvironment? Nat. Rev. Immunol., in press, https://doi.org/10.1038/s41577-021-00566-3.
21

Ivashkiv, L. B. IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 545–558.

22

Chen, Q. J.; Sun, T.; Jiang, C. Recent advancements in nanomedicine for 'cold' tumor immunotherapy. Nano-Micro Lett. 2021, 13, 92.

23

Garcia-Diaz, A.; Shin, D. S.; Moreno, B. H.; Saco, J.; Escuin-Ordinas, H.; Rodriguez, G. A.; Zaretsky, J. M.; Sun, L.; Hugo, W.; Wang, X. Y. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017, 19, 1189–1201.

24

Dorand, R. D.; Nthale, J.; Myers, J. T.; Barkauskas, D. S.; Avril, S.; Chirieleison, S. M.; Pareek, T. K.; Abbott, D. W.; Stearns, D. S.; Letterio, J. J. et al. Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 2016, 353, 399–403.

25

Wang, C.; Sun, W. J.; Ye, Y. Q.; Hu, Q. Y.; Bomba, H. N.; Gu, Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 2017, 1, 0011.

26

Fallarino, F.; Grohmann, U.; Vacca, C.; Bianchi, R.; Orabona, C.; Spreca, A.; Fioretti, M. C.; Puccetti, P. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002, 9, 1069–1077.

27

Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol. 2019, 10, 168.

28

Liu, M.; Wang, X.; Wang, L.; Ma, X. D.; Gong, Z. J.; Zhang, S. S.; Li, Y. Targeting the IDO1 pathway in cancer: From bench to bedside. J. Hematol. Oncol. 2018, 11, 100.

29

Zhou, F. Q.; Gao, J.; Xu, Z. A.; Li, T. L.; Gao, A.; Sun, F.; Wang, F. Y.; Wang, W. Q.; Geng, Y.; Zhang, F. et al. Overcoming immune resistance by sequential prodrug nanovesicles for promoting chemoimmunotherapy of cancer. Nano Today 2021, 36, 101025.

30

Mellor, A. L.; Munn, D. H. Creating immune privilege: Active local suppression that benefits friends, but protects foes. Nat. Rev. Immunol. 2008, 8, 74–80.

31

Mellor, A. L.; Lemos, H.; Huang, L. Indoleamine 2, 3-dioxygenase and tolerance: Where are we now? Front. Immunol. 2017, 8, 1360.

32

Uyttenhove, C.; Pilotte, L.; Théate, I.; Stroobant, V.; Colau, D.; Parmentier, N.; Boon, T.; Van den Eynde, B. J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Nat. Med. 2003, 9, 1269–1274.

33

Liu, X. D.; Shin, N.; Koblish, H. K.; Yang, G. J.; Wang, Q.; Wang, K.; Leffet, L.; Hansbury, M. J.; Thomas, B.; Rupar, M. et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 2010, 115, 3520–3530.

34

Holmgaard, R. B.; Zamarin, D.; Li, Y. Y.; Gasmi, B.; Munn, D. H.; Allison, J. P.; Merghoub, T.; Wolchok, J. D. Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep. 2015, 13, 412–424.

35

Hwang, S. L.; Chung, N. P. Y.; Chan, J. K. Y.; Lin, C. L. S. Indoleamine 2, 3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines. Cell Res. 2005, 15, 167–175.

36

Gettinger, S. N.; Horn, L.; Gandhi, L.; Spigel, D. R.; Antonia, S. J.; Rizvi, N. A.; Powderly, J. D.; Heist, R. S.; Carvajal, R. D.; Jackman, D. M. et al. Overall survival and long-term safety of Nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J. Clin. Oncol. 2015, 33, 2004–2012.

37

Maude, S. L.; Frey, N.; Shaw, P. A.; Aplenc, R.; Barrett, D. M.; Bunin, N. J.; Chew, A.; Gonzalez, V. E.; Zheng, Z. H.; Lacey, S. F. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517.

38

Lebbé, C.; Weber, J. S.; Maio, M.; Neyns, B.; Harmankaya, K.; Hamid, O.; O’Day, S. J.; Konto, C.; Cykowski, L.; McHenry, M. B. et al. Survival follow-up and ipilimumab retreatment of patients with advanced melanoma who received ipilimumab in prior phase II studies. Ann. Oncol. 2014, 25, 2277–2284.

39

Emens, L. A.; Middleton, G. The interplay of immunotherapy and chemotherapy: Harnessing potential synergies. Cancer Immunol. Res. 2015, 3, 436–443.

40

Feng, B.; Hou, B.; Xu, Z. A.; Saeed, M.; Yu, H. J.; Li, Y. P. Self-amplified drug delivery with light-inducible nanocargoes to enhance cancer immunotherapy. Adv. Mater. 2019, 31, 1902960.

41

Peng, J. R.; Xiao, Y.; Li, W. T.; Yang, Q.; Tan, L. W.; Jia, Y. P.; Qu, Y.; Qian, Z. Y. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv. Sci. 2018, 5, 1700891.

42

Feng, B.; Zhou, F. Y.; Hou, B.; Wang, D. G.; Wang, T. T.; Fu, Y. L.; Ma, Y. T.; Yu, H. J.; Li, Y. P. Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv. Mater. 2018, 30, 1803001.

43

Schmid, D.; Park, C. G.; Hartl, C. A.; Subedi, N.; Cartwright, A. N.; Puerto, R. B.; Zheng, Y. R.; Maiarana, J.; Freeman, G. J.; Wucherpfennig, K. W. et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 2017, 8, 1747.

44

Huang, W. M.; Wu, X.; Gao, X.; Yu, Y. F.; Lei, H.; Zhu, Z. S.; Shi, Y.; Chen, Y. L.; Qin, M.; Wang, W. et al. Maleimide-thiol adducts stabilized through stretching. Nat. Chem. 2019, 11, 310–319.

45

Duan, X. P.; Chan, C.; Lin, W. B. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem., Int. Ed. 2019, 58, 670–680.

46

Yao, L.; Feng, L. Z.; Tao, D. L.; Tao, H. Q.; Zhong, X. Y.; Liang, C.; Zhu, Y. J.; Hu, B.; Liu, Z.; Zheng, Y. Y. Perfluorocarbon nanodroplets stabilized with cisplatin-prodrug-constructed lipids enable efficient tumor oxygenation and chemo-radiotherapy of cancer. Nanoscale 2020, 12, 14764–14774.

47

Zhou, F. Y.; Feng, B.; Yu, H. J.; Wang, D. G.; Wang, T. T.; Ma, Y. T.; Wang, S. L.; Li, Y. P. Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv. Mater. 2019, 31, 1805888.

48

Rodríguez-Vargas, J. M.; Ruiz-Magaña, M. J.; Ruiz-Ruiz, C.; Majuelos-Melguizo, J.; Peralta-Leal, A.; Rodríguez, M. I.; Muñoz-Gámez, J. A.; de Almodóvar, M. R.; Siles, E.; Rivas, A. L. et al. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 2012, 22, 1181–1198.

49

Srinivas, U. S.; Tan, B. W. Q.; Vellayappan, B. A.; Jeyasekharan, A. D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084.

50

Mah, L. J.; El-Osta, A.; Karagiannis, T. C. γH2AX: A sensitive molecular marker of DNA damage and repair. Leukemia 2010, 24, 679–686.

51

Janeway, Jr. C. A.; Bottomly, K. Signals and signs for lymphocyte responses. Cell 1994, 76, 275–285.

52

Mora, J. R.; Iwata, M.; Eksteen, B.; Song, S. Y.; Junt, T.; Senman, B.; Otipoby, K. L.; Yokota, A.; Takeuchi, H.; Ricciardi-Castagnoli, P. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 2006, 314, 1157–1160.

53

Son, C. H.; Bae, J. H.; Shin, D. Y.; Lee, H. R.; Choi, Y. H.; Yang, K.; Park, Y. S. Enhanced maturation and function of dendritic cells using hydrogel coated plate and antigen electroporation. Immunol. Invest. 2013, 42, 341–355.

54

Ni, K. Y.; Lan, G. X.; Chan, C.; Duan, X. P.; Guo, N. N.; Veroneau, S. S.; Weichselbaum, R. R.; Lin, W. B. Ultrathin metal-organic-layer mediated radiotherapy-radiodynamic therapy. Matter 2019, 1, 1331–1353.

55

Bronte, V.; Pittet, M. J. The spleen in local and systemic regulation of immunity. Immunity 2013, 39, 806–818.

56

Crunkhorn, S. Genentech dives deeper into the next wave of cancer immunotherapies. Nat. Rev. Drug Discov. 2014, 13, 879.

File
12274_2021_3977_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 September 2021
Revised: 01 November 2021
Accepted: 02 November 2021
Published: 26 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 32171318 and 32101069), the Faculty of Health Sciences, University of Macau, the Start-up Research Grant (SRG) of University of Macau (No. SRG2018-00130-FHS), the Science and Technology Development Fund, Macau SAR (Nos. 0109/2018/A3, 0011/2019/AKP, 0113/2019/A2, and 0103/2021/A) and Shenzhen Science and Technology Innovation Commission, Shenzhen-Hong Kong-Macau Science and Technology Plan C (No. SGDX20201103093600004). We appreciate the assistance and support from the Proteomics, Metabolomics and Drug Development Core, Animal Research Core, and Biological Imaging and Stem Cell Core in the Faculty of Health Sciences, University of Macau.

Return