Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The interaction between cancer cells and M2 tumor-associated macrophages (M2-TAMs) facilitates tumor growth and metastasis. However, cancer cells and M2-TAMs have different spatial distribution patterns, which requires distinct drug delivery strategies. Herein, based on different tumor-penetrating ability of nanocarriers, we developed a combinatory strategy that consists of a TAMs-targeting liposome (alanine-alanine-asparagine (AAN)-Lip-regorafenib (Rego)) and a cancer cells-targeting copolymer (internalizing RGD modified with N-(2-hydroxypropyl) methacrylamide-doxorubicin (iRGD-HD)). Our study confirmed AAN-Lip-Rego accumulated at perivascular sites where M2-TAM is located, while iRGD-HD penetrated into deep site of tumor to enter cancer cells. Thereafter, we found iRGD-HD induced cancer cells undergoing immunogenic cell death to enhance tumor infiltration of CD8+ T cells. Meanwhile, AAN-Lip-Rego efficiently repolarized TAMs from M2 into M1 to alleviate tumor immunosuppression, thus reviving CD8+ T cells. Moreover, the repolarization of TAMs led to dramatic downregulation of pro-metastatic factors expressed on cancer cells. As a result, such combinatory approach elicited robust antitumor immune responses and generated considerable anti-tumor and anti-metastasis efficacy to markedly inhibit primary tumor and spontaneous lung metastasis.
Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G. M.; Apetoh, L.; Perfettini, J. L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61.
Casares, N.; Pequignot, M. O.; Tesniere, A.; Ghiringhelli, F.; Roux, S.; Chaput, N.; Schmitt, E.; Hamai, A.; Hervas-Stubbs, S.; Obeid, M. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 2005, 202, 1691–1701.
Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017, 17, 97–111.
Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72.
Ginhoux, F.; Schultze, J. L.; Murray, P. J.; Ochando, J.; Biswas, S. K. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 2016, 17, 34–40.
Caillou, B.; Talbot, M.; Weyemi, U.; Pioche-Durieu, C.; Al Ghuzlan, A.; Bidart, J. M.; Chouaib, S.; Schlumberger, M.; Dupuy, C. Tumor-associated macrophages (TAMs) form an interconnected cellular supportive network in anaplastic thyroid carcinoma. PLoS One 2011, 6, e22567.
Wynn, T. A.; Chawla, A.; Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 2013, 496, 445–455.
Komohara, Y.; Fujiwara, Y.; Ohnishi, K.; Takeya, M. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv. Drug Del. Rev. 2016, 99, 180–185.
Zhan, X. D.; Jia, L. X.; Niu, Y. M.; Qi, H. X.; Chen, X. P.; Zhang, Q. W.; Zhang, J. F.; Wang, Y. T.; Dong, L.; Wang, C. M. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials 2014, 35, 10046–10057.
Qiu, S. Q.; Waaijer, S. J. H.; Zwager, M. C.; De Vries, E. G. E.; Van Der Vegt, B.; Schröder, C. P. Tumor-associated macrophages in breast cancer: Innocent bystander or important player? Cancer Treat. Rev. 2018, 70, 178–189.
Shao, K.; Singha, S.; Clemente-Casares, X.; Tsai, S.; Yang, Y.; Santamaria, P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015, 9, 16–30.
Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat. Rev. Cancer 2002, 2, 420–430.
Sica, A.; Schioppa, T.; Mantovani, A.; Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer 2006, 42, 717–727.
Shi, C. R.; Liu, T.; Guo, Z. D.; Zhuang, R. Q.; Zhang, X. Z.; Chen, X. Y. Reprogramming tumor-associated macrophages by nanoparticle-based reactive oxygen species photogeneration. Nano Lett. 2018, 18, 7330–7342.
Wei, B. C.; Pan, J. M.; Yuan, R. T.; Shao, B. F.; Wang, Y.; Guo, X.; Zhou, S. B. Polarization of tumor-associated macrophages by nanoparticle-loaded Escherichia coli combined with immunogenic cell death for cancer immunotherapy. Nano Lett. 2021, 21, 4231–4240.
Carmona-Fontaine, C.; Bucci, V.; Akkari, L.; Deforet, M.; Joyce, J. A.; Xavier, J. B. Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proc. Natl. Acad. Sci. USA 2013, 110, 19402–19407.
Wang, J. X.; Shen, S.; Li, J.; Cao, Z. Y.; Yang, X. Z. Precise depletion of tumor seed and growing soil with shrinkable nanocarrier for potentiated cancer chemoimmunotherapy. ACS Nano 2021, 15, 4636–4646.
Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V. P.; Jiang, W.; Popović, Z.; Jain, R. K.; Bawendi, M. G.; Fukumura, D. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. USA 2011, 108, 2426–2431.
Kunjachan, S.; Pola, R.; Gremse, F.; Theek, B.; Ehling, J.; Moeckel, D.; Hermanns-Sachweh, B.; Pechar, M.; Ulbrich, K.; Hennink, W. E. et al. Passive versus active tumor targeting using RGD- and NGR-modified polymeric nanomedicines. Nano Lett. 2014, 14, 972–981.
Dai, Q.; Wilhelm, S.; Ding, D.; Syed, A. M.; Sindhwani, S.; Zhang, Y. W.; Chen, Y. Y.; MacMillan, P.; Chan, W. C. W. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 2018, 12, 8423–8435.
Li, L.; Sun, W.; Zhong, J. J.; Yang, Q. Q.; Zhu, X.; Zhou, Z.; Zhang, Z. R.; Huang, Y. Multistage nanovehicle delivery system based on stepwise size reduction and charge reversal for programmed nuclear targeting of systemically administered anticancer drugs. Adv. Funct. Mater. 2015, 25, 4101–4113.
Zhou, Q.; Shao, S. Q.; Wang, J. Q.; Xu, C. H.; Xiang, J. J.; Piao, Y.; Zhou, Z. X.; Yu, Q. S.; Tang, J. B.; Liu, X. R. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019, 14, 799–809.
Song, X.; Wan, Z. Y.; Chen, T. J.; Fu, Y.; Jiang, K. J.; Yi, X. L.; Ke, H.; Dong, J. X.; Yang, L. Q.; Li, L. et al. Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment. Biomaterials 2016, 108, 44–56.
Liu, Z.; Xiong, M.; Gong, J. B.; Zhang, Y.; Bai, N.; Luo, Y. P.; Li, L. Y.; Wei, Y. Q.; Liu, Y. H.; Tan, X. Y. et al. Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat. Commun. 2014, 5, 4280.
Yin, S.; Xia, C. Y.; Wang, Y. S.; Wan, D. D.; Rao, J. D.; Tang, X.; Wei, J. J.; Wang, X. H.; Li, M.; Zhang, Z. R. et al. Dual receptor recognizing liposomes containing paclitaxel and hydroxychloroquine for primary and metastatic melanoma treatment via autophagy-dependent and independent pathways. J. Control. Release 2018, 288, 148–160.
Yin, H.; Yang, J.; Zhang, Q.; Wang, H. Y.; Xu, J. J.; Zheng, J. N. iRGD as a tumor-penetrating peptide for cancer therapy. Mol. Med. Rep. 2017, 15, 2925–2930.
Zhao, P. F.; Yin, W. M.; Wu, A. H.; Tang, Y. S.; Wang, J. Y.; Pan, Z. Z.; Lin, T. T.; Zhang, M.; Chen, B. F.; Duan, Y. F. et al. Dual-targeting to cancer cells and M2 macrophages via biomimetic delivery of mannosylated albumin nanoparticles for drug-resistant cancer therapy. Adv. Funct. Mater. 2017, 27, 1700403.
Zhou, M. L.; Li, L. J.; Li, L.; Lin, X.; Wang, F. L.; Li, Q. Y.; Huang, Y. Overcoming chemotherapy resistance via simultaneous drug-efflux circumvention and mitochondrial targeting. Acta Pharm. Sin. B 2019, 9, 615–625.
Li, L.; Yang, Q. Q.; Zhou, Z.; Zhong, J. J.; Huang, Y. Doxorubicin-loaded, charge reversible, folate modified HPMA copolymer conjugates for active cancer cell targeting. Biomaterials 2014, 35, 5171–5187.
Tang, M. L.; Zhou, M. L.; Huang, Y.; Zhong, J. J.; Zhou, Z.; Luo, K. Dual-sensitive and biodegradable core-crosslinked HPMA copolymer-doxorubicin conjugate-based nanoparticles for cancer therapy. Polym. Chem. 2017, 8, 2370–2380.
Zhou, M. L.; Luo, C. H.; Zhou, Z.; Li, L.; Huang, Y. Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade. J. Control. Release 2021, 334, 248–262.
Peng, H. G.; Chen, B. F.; Huang, W.; Tang, Y. B.; Jiang, Y. F.; Zhang, W. Y.; Huang, Y. Z. Reprogramming tumor-associated macrophages to reverse EGFRT790M resistance by dual-targeting codelivery of gefitinib/vorinostat. Nano Lett. 2017, 17, 7684–7690.
Wang, H. R.; Tang, Y. S.; Fang, Y. F.; Zhang, M.; Wang, H. Y.; He, Z. D.; Wang, B.; Xu, Q.; Huang, Y. Z. Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQ1. Nano Lett. 2019, 19, 2935–2944.
Liu, Y.; Cao, X. T. Immunosuppressive cells in tumor immune escape and metastasis. J. Mol. Med. 2016, 94, 509–522.
Lorenzo-Sanz, L.; Muñoz, P. Tumor-infiltrating immunosuppressive cells in cancer-cell plasticity, tumor progression and therapy response. Cancer Microenviron. 2019, 12, 119–132.
Yuan, Z. Y.; Luo, R. Z.; Peng, R. J.; Wang, S. S.; Xue, C. High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. Onco Targets Ther. 2014, 7, 1475–1480.
Lin, Y. X.; Xu, J. X.; Lan, H. Y. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019, 12, 76.
Georgoudaki, A. M.; Prokopec, K. E.; Boura, V. F.; Hellqvist, E.; Sohn, S.; Östling, J.; Dahan, R.; Harris, R. A.; Rantalainen, M.; Klevebring, D. et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 2016, 15, 2000–2011.
Fu, L. Q.; Du, W. L.; Cai, M. H.; Yao, J. Y.; Zhao, Y. Y.; Mou, X. Z. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell. Immunol. 2020, 353, 104119.
Saharinen, P.; Eklund, L.; Pulkki, K.; Bono, P.; Alitalo, K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol. Med. 2011, 17, 347–362.
Lian, L.; Li, X. L.; Xu, M. D.; Li, X. M.; Wu, M. Y.; Zhang, Y.; Tao, M.; Li, W.; Shen, X. M.; Zhou, C. et al. VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer 2019, 19, 183.
Owyong, M.; Chou, J.; Van Den Bijgaart, R. J.; Kong, N.; Efe, G.; Maynard, C.; Talmi-Frank, D.; Solomonov, I.; Koopman, C.; Hadler-Olsen, E. et al. MMP9 modulates the metastatic cascade and immune landscape for breast cancer anti-metastatic therapy. Life Sci. Alliance 2019, 2, e201800226.
Zheng, H. C.; Takahashi, H.; Murai, Y.; Cui, Z. G.; Nomoto, K.; Niwa, H.; Tsuneyama, K.; Takano, Y. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 2006, 26, 3579–3583.
Smith, M. C. P.; Luker, K. E.; Garbow, J. R.; Prior, J. L.; Jackson, E.; Piwnica-Worms, D.; Luker, G. D. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004, 64, 8604–8612.
Darash-Yahana, M.; Pikarsky, E.; Abramovitch, R.; Zeira, E.; Pal, B.; Karplus, R.; Beider, K.; Avniel, S.; Kasem, S.; Galun, E. et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J. 2004, 18, 1240–1242.
Mukherjee, D.; Zhao, J. H. The role of chemokine receptor CXCR4 in breast cancer metastasis. Am. J. Cancer Res. 2013, 3, 46–57.