Journal Home > Volume 15 , Issue 4

In order to obtain an advanced anode material that exhibits excellent electrochemical performance in sodium ion batteries, a hollow nanocube MnS-CoS2-NC@NC (NC = nitrogen-doped carbon) with two kinds of nitrogen-doped carbon was synthesized by simple one-step calcination. One of the two kinds of nitrogen-doped carbon comes from the organic ligands in the precursor being mixed in the sulfide after calcination, and the other comes from the calcination of the coated polydopamine (PDA) to form a carbon shell wrapped outside the sulfide. The characteristic nanostructure with two kinds of nitrogen-doped carbon can not only improve the overall conductivity of the electrode material, which is obviously beneficial to the rapid transmission of sodium ions and thus outstanding rate performance, but also can alleviate volume expansion to maintain battery cycle stability. In the half-cell, the MnS-CoS2-NC@NC electrode not only provides an ultra-high specific capacity of 608.5 mA·h·g−1 at 0.2 A·g−1 for 100 cycles, but also shows an outstanding rate performance of 560.5 mA·h·g−1 at 5.0 A·g−1 for 1,100 cycles. Even in a full-cell composed with Na3V2(PO4)3 as the positive material, it can still maintain a capacity of 436.7 mA·h·g−1 after 900 cycles at 1.0 A·g−1. In order to explore its sodium storage mechanism, in-situ and ex-situ X-ray diffraction (XRD) tests were carried out to prove that CoS2 and MnS were reduced to produce metallic Co and metallic Mn during the discharging process, respectively, and reversibly returned during the charging process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hollow cubic MnS-CoS2-NC@NC designed by two kinds of nitrogen-doped carbon strategy for sodium ion batteries with ultraordinary rate and cycling performance

Show Author's information Ruipeng Wei1,2,§Yutao Dong1,§( )Yingying Zhang2Xiyang Kang2Xia Sheng1Jianmin Zhang2( )
College of Science, Henan Agricultural University, Zhengzhou 450002, China
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

§ Ruipeng Wei and Yutao Dong contributed equally to this work.

Abstract

In order to obtain an advanced anode material that exhibits excellent electrochemical performance in sodium ion batteries, a hollow nanocube MnS-CoS2-NC@NC (NC = nitrogen-doped carbon) with two kinds of nitrogen-doped carbon was synthesized by simple one-step calcination. One of the two kinds of nitrogen-doped carbon comes from the organic ligands in the precursor being mixed in the sulfide after calcination, and the other comes from the calcination of the coated polydopamine (PDA) to form a carbon shell wrapped outside the sulfide. The characteristic nanostructure with two kinds of nitrogen-doped carbon can not only improve the overall conductivity of the electrode material, which is obviously beneficial to the rapid transmission of sodium ions and thus outstanding rate performance, but also can alleviate volume expansion to maintain battery cycle stability. In the half-cell, the MnS-CoS2-NC@NC electrode not only provides an ultra-high specific capacity of 608.5 mA·h·g−1 at 0.2 A·g−1 for 100 cycles, but also shows an outstanding rate performance of 560.5 mA·h·g−1 at 5.0 A·g−1 for 1,100 cycles. Even in a full-cell composed with Na3V2(PO4)3 as the positive material, it can still maintain a capacity of 436.7 mA·h·g−1 after 900 cycles at 1.0 A·g−1. In order to explore its sodium storage mechanism, in-situ and ex-situ X-ray diffraction (XRD) tests were carried out to prove that CoS2 and MnS were reduced to produce metallic Co and metallic Mn during the discharging process, respectively, and reversibly returned during the charging process.

Keywords: nitrogen-doped carbon, sodium ion battery, CoS2, MnS, hollow nanocube

References(48)

1

Sun, Y.; Guo, S. H.; Zhou, H. S. Exploration of advanced electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2018, 9, 1800212.

2

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

3

Liu, T. F.; Zhang, Y. P.; Jiang, Z. G.; Zeng, X. Q.; Ji, J. P.; Li, Z. H.; Gao, X. H.; Sun, M. H.; Lin, Z.; Ling, M. et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 2019, 12, 1512–1533.

4

Li, F.; Wei, Z. X.; Manthiram, A.; Feng, Y. Z.; Ma, J. M.; Mai, L. Q. Sodium-based batteries: From critical materials to battery systems. J. Mater. Chem. A 2019, 7, 9406–9431.

5

Zhang, Y.; Wang, C.; Dong, Y.; Wei, R.; Zhang, J. Understanding the high-performance anode material of CoC2O4·2 H2O microrods wrapped by reduced graphene oxide for lithium-ion and sodium-ion batteries. Chemistry 2021, 27, 993–1001.

6

Chen, J. S.; Wei, L.; Mahmood, A.; Pei, Z. X.; Zhou, Z. X.; Chen, X. C.; Chen, Y. Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Mater. 2020, 25, 585–612.

7

Liu, Q. N.; Hu, Z.; Chen, M. Z.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Liu, Y.; Dou, S. X. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater. 2020, 30, 1909530.

8

You, Y.; Manthiram, A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1701785.

9

Shi, L. D.; Li, D. Z.; Yao, P. P.; Yu, J. L.; Li, C. H.; Yang, B.; Zhu, C. Z.; Xu, J. SnS2 nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium-ion batteries. Small 2018, 14, 1802716.

10

Tian, J. W.; Li, J.; Zhang, Y. X.; Yu, X. Y.; Hong, Z. L. Carbon-coated CoSe2 nanoparticles confined in N-doped carbon microboxes with enhanced sodium storage properties. J. Mater. Chem. A 2019, 7, 21404–21409.

11

Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494–502.

12

Su, S. L.; Liu, Q.; Wang, J.; Fan, L.; Ma, R. F.; Chen, S. H.; Han, X.; Lu, B. A. Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 22474–22480.

13

Guo, Y. P.; Feng, T. T.; Yang, J.; Gong, F.; Chen, C.; Xu, Z. Q.; Hu, C. R.; Leng, S. M.; Wang, J. C.; Wu, M. Q. MOF-derived manganese monoxide nanosheet-assembled microflowers for enhanced lithium-ion storage. Nanoscale 2019, 11, 10763–10773.

14

Wei, R. P.; Dong, Y. T.; Zhang, Y. Y.; Zhang, R.; Al-Tahan, M. A.; Zhang, J. M. In-situ self-assembled hollow urchins F-Co-MOF on rGO as advanced anodes for lithium-ion and sodium-ion batteries. J. Colloid Interface Sci. 2021, 582, 236–245.

15

Fang, Y. J.; Luan, D. Y.; Lou, X. W. Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 2020, 32, 2002976.

16

Liao, Y. Q.; Wu, C.; Zhong, Y. T.; Chen, M.; Cai, L. Y.; Wang, H. R.; Liu, X.; Cao, G. Z.; Li, W. S. Highly dispersed Co-Mo sulfide nanoparticles on reduced graphene oxide for lithium and sodium ion storage. Nano Res. 2020, 13, 188–195.

17

Yang, C. H.; Liang, X. H.; Ou, X.; Zhang, Q. B.; Zheng, H. S.; Zheng, F. H.; Wang, J. H.; Huang, K.; Liu, M. L. Heterostructured nanocube-shaped binary sulfide (SnCo)S2 interlaced with s-doped graphene as a high-performance anode for advanced Na+ batteries. Adv. Funct. Mater. 2019, 29, 1807971.

18

Fang, Y. J.; Luan, D. Y.; Chen, Y.; Gao, S. Y.; Lou, X. W. Synthesis of copper-substituted CoS2@CuxS double-shelled nanoboxes by sequential ion exchange for efficient sodium storage. Angew. Chem., Int. Ed. 2020, 59, 2644–2648.

19

Yin, W. H.; Li, W. Y.; Wang, K.; Chai, W. W.; Ye, W. K.; Rui, Y. C.; Tang, B. J. FeS2@Porous octahedral carbon derived from metal-organic framework as a stable and high capacity anode for lithium-ion batteries. Electrochim. Acta 2019, 318, 673–682.

20

Zhu, J. H.; Wang, J. W.; Li, G. W.; Huang, L.; Cao, M. Y.; Wu, Y. P. Heterogeneous structured pomegranate-like Bi@C nanospheres for high-performance sodium storage. J. Mater. Chem. A 2020, 8, 25746–25755.

21

Xu, Y.; Matios, E.; Luo, J. M.; Li, T.; Lu, X.; Jiang, S. H.; Yue, Q.; Li, W. Y.; Kang, Y. J. SnO2 quantum dots enabled site-directed sodium deposition for stable sodium metal batteries. Nano Lett. 2021, 21, 816–822.

22

Ma, Y.; Ma, Y. J.; Bresser, D.; Ji, Y. C.; Geiger, D.; Kaiser, U.; Streb, C.; Varzi, A.; Passerini, S. Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano 2018, 12, 7220–7231.

23

Lu, Y.; Yu, L.; Lou, X. W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 2018, 4, 972–996.

24

Wang, J. Y.; Cui, Y.; Wang, D. Design of hollow nanostructures for energy storage, conversion and production. Adv. Mater. 2019, 31, 1801993.

25

Chen, L.; Luo, N. J.; Huang, S. P.; Li, Y. F.; Wei, M. D. Metal-organic framework-derived hollow structure CoS2/nitrogen-doped carbon spheres for high-performance lithium/sodium ion batteries. Chem. Commun. 2020, 56, 3951–3954.

26

Li, X. R.; Yang, X. C.; Xue, H. G.; Pang, H.; Xu, Q. Metal-organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2, 100027.

27

Li, Q.; Li, X. R.; Gu, J. W.; Li, Y. L.; Tian, Z. Q.; Pang, H. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 2021, 14, 1405–1412.

28

Li, X. X.; Zhu, P. Y.; Li, Q.; Xu, Y. X.; Zhao, Y.; Pang, H. Nitrogen-, phosphorus-doped carbon-carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Met. 2020, 39, 680–687.

29

Zheng, S. S.; Li, Q.; Xue, H. G.; Pang, H.; Xu, Q. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. Natl. Sci. Rev. 2020, 7, 305–314.

30

Wang, D. D.; Guo, Z.; Zhou, J. J.; Chen, J.; Zhao, G. Z.; Chen, R. H.; He, M. N.; Liu, Z. B.; Wang, H. B.; Chen, Q. W. Novel Mn3[Co(CN)6]2@SiO2@Ag core-shell nanocube: Enhanced two-photon fluorescence and magnetic resonance dual-modal imaging-guided photothermal and chemo-therapy. Small 2015, 11, 5956–5967.

31

Dong, Y. T.; Ma, Y. H.; Li, Y. S.; Niu, M. T.; Yang, J.; Song, X. C.; Li, D.; Liu, Y. S.; Zhang, J. M. 3D architectures with Co2(OH)2CO3 nanowires wrapped by reduced graphene oxide as superior rate anode materials for Li-ion batteries. Nanoscale 2019, 11, 21180–21187.

32

Liu, D. H.; Li, W. H.; Zheng, Y. P.; Cui, Z.; Yan, X.; Liu, D. S.; Wang, J. W.; Zhang, Y.; Lü, H. Y.; Bai, F. Y. et al. In situ encapsulating α-MnS into N, S-codoped nanotube-like carbon as advanced anode material: α → β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells. Adv. Mater. 2018, 30, 1706317.

33

Liao, S. Y.; Cui, T. T.; Zhang, S. Y.; Cai, J. J.; Zheng, F.; Liu, Y. D.; Min, Y. G. Cross-nanoflower CoS2 in-situ self-assembled on rGO sheet as advanced anode for lithium/sodium ion battery. Electrochim. Acta 2019, 326, 134992.

34

Li, N. N.; Sun, L.; Wang, K.; Xu, S.; Zhang, J.; Guo, X. X.; Liu, X. H. Sandwiched N-carbon@Co9S8@Graphene nanosheets as high capacity anode for both half and full lithium-ion batteries. J. Energy Chem. 2020, 51, 62–71.

35

Kong, L. J.; Liu, Y. Y.; Huang, H.; Liu, M.; Xu, W.; Li, B. Y.; Bu, X. H. Interconnected CoS2/NC-CNTs network as high-performance anode materials for lithium-ion batteries. Sci. China Mater. 2020, 64, 820–829.

36

Liu, Q.; Zhang, S. J.; Xiang, C. C.; Luo, C. X.; Zhang, P. F.; Shi, C. G.; Zhou, Y.; Li, J. T.; Huang, L.; Sun, S. G. Cubic MnS-FeS2 composites derived from a Prussian blue analogue as anode materials for sodium-Ion batteries with long-term cycle stability. ACS Appl. Mater. Interfaces 2020, 12, 43624–43633.

37

Liu, J. T.; Xiao, S. H.; Zhang, Z. Y.; Chen, Y.; Xiang, Y.; Liu, X. Q.; Chen, J. S.; Chen, P. Naturally derived honeycomb-like N, S-codoped hierarchical porous carbon with MS2 (M = Co, Ni) decoration for high-performance Li-S battery. Nanoscale 2020, 12, 5114–5124.

38

Liu, X.; Wang, Y. W.; Wang, Z. Y.; Zhou, T.; Yu, M. Z.; Xiu, L. Y.; Qiu, J. S. Achieving ultralong life sodium storage in amorphous cobalt-tin binary sulfide nanoboxes sheathed in N-doped carbon. J. Mater. Chem. A 2017, 5, 10398–10405.

39

Xiao, F. P.; Yang, X. M.; Wang, D. H.; Wang, H. M.; Yu, D. Y. W.; Rogach, A. L. Metal-organic framework derived CoS2 wrapped with nitrogen-doped carbon for enhanced lithium/sodium storage performance. ACS Appl. Mater. Interfaces 2020, 12, 12809–12820.

40

He, X.; Bi, L. N.; Li, Y.; Xu, C. G.; Lin, D. M. CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries. Electrochim. Acta 2020, 332, 135453.

41

Zhang, Z.; Huang, Y.; Gao, X. G.; Xu, Z. P.; Wang, X. Rational design of hierarchically structured CoS2@NCNTs from metal-organic frameworks for efficient lithium/sodium storage performance. ACS Appl. Energy Mater. 2020, 3, 6205–6214.

42

Sun, Z. H.; Liu, Y.; Wu, D. X.; Tan, K.; Hou, L. R.; Yuan, C. Z. Construction of a multi-dimensional flexible MnS based paper electrode with ultra-stable and high-rate capability towards efficient sodium storage. Nanoscale 2020, 12, 4119–4127.

43

Pham, D. T.; Vu, T. T.; Kim, S.; Sambandam, B.; Mathew, V.; Lim, J.; Kim, J. A versatile pyramidal hauerite anode in congeniality diglyme-based electrolytes for boosting performance of Li- and Na-ion batteries. Adv. Energy Mater. 2019, 9, 1900710.

44

Liu, Y. Y.; Jiang, W. L.; Liu, M.; Zhang, L.; Qiang, C. C.; Fang, Z. Ultrafine Co1-xS attached to porous interconnected carbon skeleton for sodium-ion batteries. Langmuir 2019, 35, 16487–16495.

45

Huang, Z. Y.; Han, X. Y.; Cui, X.; He, C. E.; Zhang, J. L.; Wang, X. G.; Lin, Z. Q.; Yang, Y. K. Vertically aligned VS2 on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage. J. Mater. Chem. A 2020, 8, 5882–5889.

46

Fang, Y. J.; Guan, B. Y.; Luan, D. Y.; Lou, X. W. Synthesis of CuS@CoS2 double-shelled nanoboxes with enhanced sodium storage properties. Angew. Chem., Int. Ed. 2019, 131, 7821–7825.

47

Fan, S. W.; Li, G. D.; Cai, F. P.; Yang, G. Synthesis of porous Ni-doped CoSe2/C nanospheres towards high-rate and long-term sodium-ion half/full batteries. Chem.—Eur. J. 2020, 26, 8579–8587.

48

Deng, C. J.; Ma, C. R.; Lau, M. L.; Skinner, P.; Liu, Y. Z.; Xu, W. Q.; Zhou, H.; Ren, Y.; Yin, Y. D.; Williford, B. et al. Amorphous and crystalline TiO2 nanoparticle negative electrodes for sodium-ion batteries. Electrochim. Acta 2019, 321, 134723.

File
12274_2021_3973_MOESM1_ESM.pdf (999.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 September 2021
Revised: 26 October 2021
Accepted: 03 November 2021
Published: 26 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We appreciate the support from the Top-Notch Talents Program of Henan Agricultural University (No. 30501035), the Science and Technology Department of Henan Province (No. 212102210586), and the National Natural Science Foundation of China (No. 21373189).

Return