Journal Home > Volume 15 , Issue 4

La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) is recognized as one of the most promising cathode materials for the highly-desired intermediate-temperature solid oxide fuel cell (IT-SOFC) technology. However, it is still challenged by polarization losses due to reduced operation temperatures. In this work, a series of Ba2+-doped La0.6−xBaxSr0.4Co0.2Fe0.8O3−δ (LBSCFx, x = 0.05, 0.10, 0.15, and 0.20) materials are successfully synthesized and their electrochemical performances are evaluated as a cathode for IT-SOFC technology. The study shows that, compared to the un-doped LSCF, the Ba2+-doped LBSCF possess higher electrical conductivities at 500–800 °C and display lower polarization resistances to oxygen adsorption/dissociation. As a result, the Ni-SDC|SDC|LBSCF0.20 cell (SDC = samarium-doped cerium, Sm0.2Ce0.8O1.9) delivers a high maximum power density of 0.704 W/cm2 at 750 °C, which is > 30% higher than the Ni-SDC|SDC|LSCF cell. This work reveals that Ba 2+-doping is effective in enhancing oxygen catalytic activity of LSCF-based cathode materials, demonstrating a new and commercial-feasible strategy in developing high performance cathode materials for the IT-SOFC technology.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells

Show Author's information Changkun Cai1,2,§Manyi Xie1,2,§Ke Xue1,2Yu Shi1,2Shuting Li1,2Yuanyuan Liu2Shengli An1,2( )Hong Yang3( )
School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Inner Mongolia University of Science and Technology, Baotou 014010, China
School of Engineering, The University of Western Australia, Perth, WA 6009, Australia

§ Changkun Cai and Manyi Xie contributed equally to this work.

Abstract

La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) is recognized as one of the most promising cathode materials for the highly-desired intermediate-temperature solid oxide fuel cell (IT-SOFC) technology. However, it is still challenged by polarization losses due to reduced operation temperatures. In this work, a series of Ba2+-doped La0.6−xBaxSr0.4Co0.2Fe0.8O3−δ (LBSCFx, x = 0.05, 0.10, 0.15, and 0.20) materials are successfully synthesized and their electrochemical performances are evaluated as a cathode for IT-SOFC technology. The study shows that, compared to the un-doped LSCF, the Ba2+-doped LBSCF possess higher electrical conductivities at 500–800 °C and display lower polarization resistances to oxygen adsorption/dissociation. As a result, the Ni-SDC|SDC|LBSCF0.20 cell (SDC = samarium-doped cerium, Sm0.2Ce0.8O1.9) delivers a high maximum power density of 0.704 W/cm2 at 750 °C, which is > 30% higher than the Ni-SDC|SDC|LSCF cell. This work reveals that Ba 2+-doping is effective in enhancing oxygen catalytic activity of LSCF-based cathode materials, demonstrating a new and commercial-feasible strategy in developing high performance cathode materials for the IT-SOFC technology.

Keywords: perovskite oxide, solid oxide fuel cell (SOFC), intermediate-temperature, Ba-doping, La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF)

References(39)

1

Yamamoto, O.; Takeda, Y.; Kanno, R.; Noda, M. Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ion. 1987, 22, 241–246.

2

Shin, J. F.; Xu, W.; Zanella, M.; Dawson, K.; Savvin, S. N.; Claridge, J. B.; Rosseinsky, M. J. Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells. Nat. Energy 2017, 2, 16214.

3

Brandon, N. P.; Skinner, S.; Steele, B. C. H. Recent advances in materials for fuel cells. Ann. Rev. Mater. Res. 2003, 33, 183–213.

4

Tarancón, A. Strategies for lowering solid oxide fuel cells operating temperature. Energies 2009, 2, 1130–1150.

5

Seyed-Vakili, S. V.; Babaei, A.; Ataie, M.; Heshmati-Manesh, S.; Abdizadeh, H. Enhanced performance of La0.8Sr0.2MnO3 cathode for solid oxide fuel cells by co-infiltration of metal and ceramic precursors. J. Alloy Compd. 2018, 737, 433–441.

6

Duan, N. Q.; Yang, J. J.; Gao, M. R.; Zhang, B. W.; Luo, J. L.; Du, Y. H.; Xu, M. H.; Jia, L. C.; Chi, B.; Li, J. Multi-functionalities enabled fivefold applications of LaCo0.6Ni0.4O3−δ in intermediate temperature symmetrical solid oxide fuel/electrolysis cells. Nano Energy 2020, 77, 105207.

7

Chen, Y.; Bu, Y. F.; Zhao, B. T.; Zhang, Y. X.; Ding, D.; Hu, R. Z.; Wei, T.; Rainwater, B.; Ding, Y.; Chen, F. L. et al. A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy 2016, 26, 90–99.

8

Kiebach, R.; Knöfel, C.; Bozza, F.; Klemensø, T. Chatzichristodoulou, C. Infiltration of ionic-, electronic- and mixed-conducting nano particles into La0.75Sr0.25MnO3-Y0.16Zr0.84O2 cathodes—A comparative study of performance enhancement and stability at different temperatures. J. Power Sources 2013, 228, 170–177.

9

Lee, K. T.; Manthiram, A. Comparison of Ln0.6Sr0.4CoO3−δ (Ln = La, Pr, Nd, Sm, and Gd) as cathode materials for intermediate temperature solid oxide fuel cells. J. Electrochem. Soc. 2006, 153, A794–A798.

10

Hong, T.; Brinkman, K.; Xia, C. R. Copper oxide as a synergistic catalyst for the oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite structured electrocatalyst. J. Power Sources 2016, 329, 281–289.

11

Shao, Z. P.; Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 2004, 431, 170–173.

12

Stevenson, J. W.; Armstrong, T. R.; Carneim, R. D.; Pederson, L. R.; Weber, W. J. Electrochemical properties of mixed conducting perovskites La1−xMxCo1−yFeyO3−δ (M = Sr, Ba, Ca). J. Electrochem. Soc. 1996, 143, 2722–2729.

13

Crumlin, E. J.; Ahn, S. J.; Lee, D.; Mutoro, E.; Biegalski, M. D.; Christen, H. M.; Shao-Horn, Y. Oxygen electrocatalysis on epitaxial La0.6Sr0.4CoO3−δ perovskite thin films for solid oxide fuel cells. J. Electrochem. Soc. 2012, 159, F219–F225.

14

Lee, D.; Lee, Y. L.; Grimaud, A.; Hong, W. T.; Biegalski, M. D.; Morgan, D.; Shao-Horn, Y. Enhanced oxygen surface exchange kinetics and stability on epitaxial La0.8Sr0.2CoO3−δ thin films by La0.8Sr0.2MnO3−δ decoration. J. Phys. Chem. C 2014, 118, 14326–14334.

15

Tai, L. W.; Nasrallah, M. M.; Anderson, H. U.; Sparlin, D. M.; Sehlin, S. R. Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ion. 1995, 76, 273–283.

16

Gędziorowski, B., Świerczek, K., Molenda, J. La1−xBaxCo0.2Fe0.8O3−δ perovskites for application in intermediate temperature SOFC. Solid State Ion. 2012, 225, 437–442.

17

Li, M.; Wang, Y.; Wang, Y. L.; Chen, F. L.; Xia, C. R. Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate-temperature solid oxide fuel cells. ACS Appl. Mater. Interfaces 2014, 6, 11286–11294.

18

He, B. B.; Zhang, K.; Ling, Y. H.; Xu, J. M.; Zhao, L. A surface modified La0.6Sr0.4Co0.2Fe0.8O3−δ ultrathin membrane for highly efficient oxygen separation. J. Membrane Sci. 2014, 464, 55–60.

19

Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst. 2001, 34, 210–213.

20
Larson, A. C.; Von Dreele, R. B. General Structure Analysis System (GSAS). Los Alamos National Laboratory: Los Alamos, 2000; pp 86–748.
21

Ko, M.-H.; Hwang, J.-H. Application of sonochemical processing to LSC(La0.6Sr0.4CoO3)/SDC(Sm2O3-doped CeO2) composite cathodes for solid oxide fuel cells involving CeO2-based electrolytes. Ceram. Int. 2016, 42, 11548–11553.

22

Lou, X. Y.; Wang, S. Z.; Liu, Z.; Yang, L.; Liu, M. L. Improving La0.6Sr0.4Co0.2Fe0.8O3−δ cathode performance by infiltration of a Sm0.5Sr0.5CoO3−δ coating. Solid State Ion. 2009, 180, 1285–1289.

23

Zhou, F.; Liu, Y. H.; Zhao, X. F.; Tang, W. X.; Yang, S. B.; Zhong, S. H.; Wei, M. R. Effects of cerium doping on the performance of LSCF cathodes for intermediate temperature solid oxide fuel cells. Int. J. Hydrogen Energy 2018, 43, 18946–18954.

24

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767.

25

Wang, J. L.; Yang, Z. B.; Yang, K. C.; Chen, Y.; Xiong, X. Y.; Peng, S. P. Chromium deposition and poisoning on Ba0.9Co0.7Fe0.2Nb0.1O3−δ cathode of solid oxide fuel cells. Electrochim. Acta 2018, 289, 503–515.

26

Gao, J. Q.; Song, X. W.; Zhou, F.; An, S. L.; Tian, Y. W. Substituent effects of Ba2+ for Sm3+ on the structure and electrochemical performances of Sm0.5Sr0.5Co0.8Fe0.2O3−δ cathode for intermediate temperature solid oxide fuel cells. J. Power Sources 2012, 218, 383–392.

27

Li, H.; Wei, B.; Su, C. X.; Wang, C. Q.; Lü, Z. Novel cobalt-free layered perovskite LaBaFe2−xNbxO6−δ (x = 0–0.1) as cathode for solid oxide fuel cells. J. Power Sources 2020, 453, 227875.

28

Shao, Z. P.; Xiong, G. X.; Tong, J. H.; Dong, H.; Yang, W. S. Ba effect in doped Sr(Co0.8Fe0.2)O3−δ on the phase structure and oxygen permeation properties of the dense ceramic membranes. Sep. Purif. Technol. 2001, 25, 419–429.

29

Sérgio, P.; Julião, B. A-site cation influences on performance, structure and conductivity of a lanthanide-based perovskite electrode for symmetrical solid oxide fuel cells. J. Power Sources 2020, 450, 227723.

30

Teraoka, Y.; Zhang, H. M.; Okamoto, K.; Yamazoe, N. Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ perovskite-type oxides. Mater. Res. Bull. 1988, 23, 51–58.

31

Setevich, C. F.; Mogni, L. V.; Caneiro, A.; Prado, F. D. Optimum cathode configuration for IT-SOFC using La0.4Ba0.6CoO3−δ and Ce0.9Gd0.1O1.95. Int. J. Hydrogen Energy 2012, 37, 14895–14901.

32

Montini, T.; Bevilacqua, M.; Fonda, E.; Casula, M. F.; Lee, S.; Tavagnacco, C.; Gorte, R. J.; Fornasiero, P. Relationship between electrical behavior and structural characteristics in Sr-doped LaNi0.6Fe0.4O3−δ mixed oxides. Chem. Mater. 2009, 21, 1768–1774.

33

Tai, L. W.; Nasrallah, M. M.; Anderson, H. U.; Sparlin, D. M.; Sehlin, S. R. Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ion. 1995, 76, 259–271.

34

Kozuka, H.; Ohbayashi, K.; Koumoto, K. Electronic conduction in La-based perovskite-type oxides. Sci. Technol. Adv. Mater. 2015, 16, 026001.

35

Dasgupta, N.; Krishnamoorthy, R.; Jacob, K. T. Crystal structure, thermal expansion and electrical conductivity of Nd0.7Sr0.3Fe1−xCoxO3 (0 ≤ x≤0.8). Mater. Sci. Eng. B 2002, 90, 278–286.

36

Torrance, J. B.; Lacorre, P.; Nazzal, A. I.; Ansaldo, E. J.; Niedermayer, C. Systematic study of insulator-metal transitions in perovskites RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B Condens. Matter 1992, 45, 8209–8212.

37

Ortiz-Vitoriano, N.; De Larramendi, I. R.; Cook, S. N.; Burriel, M.; Aguadero, A.; Kilner, J. A.; Rojo, T. The formation of performance enhancing pseudo-composites in the highly active La1−xCaxFe0.8Ni0.2O3 system for IT-SOFC application. Adv. Funct. Mater. 2013, 23, 5131–5139.

38

Liu, Y. H.; Wang, F. Z.; Chi, B.; Pu, J.; Jian, L.; Jiang, S. P. A stability study of impregnated LSCF-GDC composite cathodes of solid oxide fuel cells. J. Alloys Compd. 2013, 578, 37–43.

39

Zhang, Y.; Zhao, H. L.; Du, Z. H.; Świerczek, K.; Li, Y. Y. High-performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell. Chem. Mater. 2019, 31, 3784–3793.

File
12274_2021_3972_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 April 2021
Revised: 21 October 2021
Accepted: 03 November 2021
Published: 07 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No. 51974167). XRD, SEM and TEM examinations were assisted by the Center of Laboratory, Inner Monglia University of Science and Technology.

Return