Journal Home > Volume 15 , Issue 4

Enhancing the selectivity of noble metal catalysts through electronic modulation is important for academic research and chemical industrial processes. Herein, we report a facile sacrificial template strategy for the synthesis of PdZn intermetallic compound (3–4 nm) highly distributed in ZnO/nitrogen-decorated carbon hollow spheres (PdZn-ZnO/NCHS) to optimize the selectivity of Pd catalysts, which involves carbonization of a core–shell structured polystyrene (PS)@ZIF-8 precursor in an inert atmosphere, impregnation Pd precursor, and subsequent H2 reduction treatment. Due to the unique structural and compositional features, the developed PdZn-ZnO/NCHS delivers an excellent catalytic performance for the semihydrogenation of 2-methyl-3-butyn-2-ol (MBY) to 2-methyl-3-buten-2-ol (MBE) with high activity (> 99%), high selectivity (96%), and good recyclability, outperforming the analog Pd on ZnO (Pd/ZnO) as well as the supported Pd nanoparticles (Pd/C and Pd/NC). Density functional theory (DFT) calculations reveal that the presence of Znδ+ species in PdZn-ZnO/NCHS alters the adsorption modes of reactant and product, leading to a decrease of the adsorption strength and an enhancement of the energy barrier for overhydrogenation, which results in a kinetic favor for the selective transformation of MBY to MBE. In addition, PdZn-ZnO/NCHS was also very effective for the partial hydrogenation of dehydrolinalool to hydrolinalool.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

PdZn intermetallic compound stabilized on ZnO/nitrogen-decorated carbon hollow spheres for catalytic semihydrogenation of alkynols

Show Author's information Chunlin Ye§Xujian Chen§Shasha Li§Binbin FengYanghe FuFumin Zhang( )De-Li Chen( )Weidong Zhu( )
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China

§ Chunlin Ye, Xujian Chen, and Shasha Li contributed equally to this work.

Abstract

Enhancing the selectivity of noble metal catalysts through electronic modulation is important for academic research and chemical industrial processes. Herein, we report a facile sacrificial template strategy for the synthesis of PdZn intermetallic compound (3–4 nm) highly distributed in ZnO/nitrogen-decorated carbon hollow spheres (PdZn-ZnO/NCHS) to optimize the selectivity of Pd catalysts, which involves carbonization of a core–shell structured polystyrene (PS)@ZIF-8 precursor in an inert atmosphere, impregnation Pd precursor, and subsequent H2 reduction treatment. Due to the unique structural and compositional features, the developed PdZn-ZnO/NCHS delivers an excellent catalytic performance for the semihydrogenation of 2-methyl-3-butyn-2-ol (MBY) to 2-methyl-3-buten-2-ol (MBE) with high activity (> 99%), high selectivity (96%), and good recyclability, outperforming the analog Pd on ZnO (Pd/ZnO) as well as the supported Pd nanoparticles (Pd/C and Pd/NC). Density functional theory (DFT) calculations reveal that the presence of Znδ+ species in PdZn-ZnO/NCHS alters the adsorption modes of reactant and product, leading to a decrease of the adsorption strength and an enhancement of the energy barrier for overhydrogenation, which results in a kinetic favor for the selective transformation of MBY to MBE. In addition, PdZn-ZnO/NCHS was also very effective for the partial hydrogenation of dehydrolinalool to hydrolinalool.

Keywords: density functional theory (DFT), PdZn intermetallic compound, semihydrogenation of alkynol, MOF-derived N-decorated carbon hollow sphere

References(63)

1

Zhang, P.; Wang, Z. Y.; Zhang, Y.; Wang, J.; Li, W. Q.; Li, L. N.; Zhang, P. P.; Wei, C. D.; Miao, S. D. Preparation of semi-hydrogenation catalysts by embedding Pd in layered double hydroxides nanocages via sacrificial template of ZIF-67. Appl. Catal. A Gen. 2020, 597, 117540.

2

Wang, Z.; Mao, S. J.; Li, H. R.; Wang, Y. How to synthesize vitamin E. Acta Phys. Chim. Sin. 2018, 34, 598–617.

3

Ki Kim, S.; Kim, C.; Lee, J. H.; Kim, J.; Lee, H.; Moon, S. H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. J. Catal. 2013, 306, 146–154.

4

Lindlar, H. Ein neuer katalysator für selektive hydrierungen. Helv. Chim. Acta 1952, 35, 446–450.

5

Lindlar, H.; Dubuis, R. Palladium catalyst for partial reduction of acetylenes. Org. Synth. 1966, 46, 89–92.

6

Dhamodharan, R. Selective hydrogenation of phenylacetylene using block copolymer additional poisoning agent. Chem. Lett. 1996, 25, 235–236.

7

Mallat, T.; Baiker, A. Selectivity enhancement in heterogeneous catalysis induced by reaction modifiers. Appl. Catal. A Gen. 2000, 200, 3–22.

8

Bridier, B.; Hevia, M. A. G.; López, N.; Pérez-Ramírez, J. Permanent alkene selectivity enhancement in copper-catalyzed propyne hydrogenation by temporary CO supply. J. Catal. 2011, 278, 167–172.

9

Garcia, P. E.; Lynch, A. S.; Monaghan, A.; Jackson, S. D. Using modifiers to specify stereochemistry and enhance selectivity and activity in palladium-catalysed, liquid phase hydrogenation of alkynes. Catal. Today 2011, 164, 548–551.

10

Sulman, E.; Bodrova, Y.; Matveeva, V.; Semagina, N.; Cerveny, L.; Kurtc, V.; Bronstein, L.; Platonova, O.; Valetsky, P. Hydrogenation of dehydrolinalool with novel catalyst derived from Pd colloids stabilized in micelle cores of polystyrene-poly-4-vinylpyridine block copolymers. Appl. Catal. A Gen. 1999, 176, 75–81.

11

Semagina, N. V.; Bykov, A. V.; Sulman, E. M.; Matveeva, V. G.; Sidorov, S. N.; Dubrovina, L. V.; Valetsky, P. M.; Kiselyova, O. I.; Khokhlov, A. R.; Stein, B. et al. Selective dehydrolinalool hydrogenation with poly (ethylene oxide)-block-poly-2-vinylpyridine micelles filled with Pd nanoparticles. J. Mol. Catal. A Chem. 2004, 208, 273–284.

12

Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.

13

Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.

14

Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.

15

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

16

Wang, Z. Y.; Wang, C.; Hu, Y. D.; Yang, S.; Yang, J.; Chen, W. X.; Zhou, H.; Zhou, F. Y.; Wang, L. X.; Du, J. Y. et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res. 2021, 14, 2790–2796.

17
Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527. https://doi.org/10.1007/s12274-021-3511-z
DOI
18

Wen, J. F.; Chen, Y. J.; Ji, S. F.; Zhang, J.; Wang, D. S.; Li, Y. D. Metal-organic frameworks-derived nitrogen-doped carbon supported nanostructured PtNi catalyst for enhanced hydrosilylation of 1-octene. Nano Res. 2019, 12, 2584–2588.

19

Li, Z.; Cui, Y. R.; Wu, Z. W.; Milligan, C.; Zhou, L.; Mitchell, G.; Xu, B.; Shi, E. Z.; Miller, J. T.; Ribeiro, F. H. et al. Reactive metal-support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nat. Catal. 2018, 1, 349–355.

20

Zhang, P. F.; Dai, X. P.; Zhang, X.; Chen, Z. K.; Yang, Y.; Sun, H.; Wang, X. B.; Wang, H.; Wang, M. L.; Su, H. X. et al. One-pot synthesis of ternary Pt-Ni-Cu nanocrystals with high catalytic performance. Chem. Mater. 2015, 27, 6402–6410.

21

Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747.

22

Friedrich, M.; Teschner, D.; Knop-Gericke, A.; Armbrüster, M. Surface and subsurface dynamics of the intermetallic compound ZnNi in methanol steam reforming. J. Phys. Chem. C 2012, 116, 14930–14935.

23

Furukawa, S.; Yoshida, Y.; Komatsu, T. Chemoselective hydrogenation of nitrostyrene to aminostyrene over Pd- and Rh-based intermetallic compounds. ACS Catal. 2014, 4, 1441–1450.

24

Hu, M. Z.; Zhao, S.; Liu, S. J.; Chen, C.; Chen, W. X.; Zhu, W.; Liang, C.; Cheong, W. C.; Wang, Y.; Yu, Y. et al. MOF-confined sub-2 nm atomically ordered intermetallic PdZn nanoparticles as high-performance catalysts for selective hydrogenation of acetylene. Adv. Mater. 2018, 30, 1801878.

25

Mao, S. J.; Zhao, B. W.; Wang, Z.; Gong, Y. T.; Lü, G. F.; Ma, X.; Yu, L. L.; Wang, Y. Tuning the catalytic performance for the semi-hydrogenation of alkynols by selectively poisoning the active sites of Pd catalysts. Green Chem. 2019, 21, 4143–4151.

26

Han, A. J.; Zhang, J.; Sun, W. M.; Chen, W. X.; Zhang, S. L.; Han, Y. H.; Feng, Q. C.; Zheng, L. R.; Gu, L.; Chen, C. et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun. 2019, 10, 3787.

27

Shen, L. F.; Mao, S. J.; Li, J. Q.; Li, M. M.; Chen, P.; Li, H. R.; Chen, Z. R.; Wang, Y. PdZn intermetallic on a CN@ZnO hybrid as an efficient catalyst for the semihydrogenation of alkynols. J. Catal. 2017, 350, 13–20.

28

Zhang, R. G.; Zhang, J.; Zhao, B.; He, L. L.; Wang, A. J.; Wang, B. J. Insight into the effects of Cu component and the promoter on the selectivity and activity for efficient removal of acetylene from ethylene on Cu-based catalyst. J. Phys. Chem. C 2017, 121, 27936–27949.

29

Li, R. R.; Yue, Y. X.; Chen, Z.; Chen, X. L.; Wang, S. S.; Jiang, Z.; Wang, B. L.; Xu, Q. Q.; Han, D. M.; Zhao, J. Selective hydrogenation of acetylene over Pd-Sn catalyst: Identification of Pd2Sn intermetallic alloy and crystal plane-dependent performance. Appl. Catal. B Environ. 2020, 279, 119348.

30

Furukawa, S.; Komatsu, T. Intermetallic compounds: Promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 2017, 7, 735–765.

31

Chen, S.; Zhao, Z. J.; Mu, R. T.; Chang, X.; Luo, J.; Purdy, S. C.; Kropf, A. J.; Sun, G. D.; Pei, C. L.; Miller, J. T. et al. Propane dehydrogenation on single-site [PtZn4] intermetallic catalysts. Chem 2021, 7, 387–405.

32

Okhlopkova, L. B.; Cherepanova, S. V.; Prosvirin, I. P.; Kerzhentsev, M. A.; Ismagilov, Z. R. Semihydrogenation of 2-methyl-3-butyn-2-ol on Pd-Zn nanoalloys: Effect of composition and heterogenization. Appl. Catal. A Gen. 2018, 549, 245–253.

33

Shen, K.; Chen, X. D.; Chen, J. Y.; Li, Y. W. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 2016, 6, 5887–5903.

34

Chen, Y. Z.; Zhang, R.; Jiao, L.; Jiang, H. L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23.

35

Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511.

36

Zhang, F.; Wei, Y. Y.; Wu, X. T.; Jiang, H. Y.; Wang, W.; Li, H. X. Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3+3] cycloaddition reactions. J. Am. Chem. Soc. 2014, 136, 13963–13966.

37

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

38

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

39

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

40

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

41

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

42

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

43

Nozawa, K.; Endo, N.; Kameoka, S.; Tsai, A. P.; Ishii, Y. Catalytic properties dominated by electronic structures in PdZn, NiZn, and PtZn intermetallic compounds. J. Phys. Soc. Jpn. 2011, 80, 064801.

44

Zhou, H. R.; Yang, X. F.; Li, L.; Liu, X. Y.; Huang, Y. Q.; Pan, X. L.; Wang, A. Q.; Li, J.; Zhang, T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 2016, 6, 1054–1061.

45

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

46

Heyden, A.; Bell, A. T.; Keil, F. J. Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 2005, 123, 224101.

47

Tian, Z.; Chen, D. L.; He, T.; Yang, P. Y.; Wang, F. F.; Zhong, Y. J.; Zhu, W. D. Theoretical evidence on the confinement effect of Pt@UiO-66-NH2 for cinnamaldehyde hydrogenation. J. Phys. Chem. C 2019, 123, 22114–22122.

48

Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 2016, 37, 1030–1035.

49

Nelson, R.; Ertural, C.; George, J.; Deringer, V. L.; Hautier, G.; Dronskowski, R. Lobster: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 2020, 41, 1931–1940.

50

Cai, Q. L.; Xu, Q. H.; Zhang, Y. Y.; Fu, Y. H.; Chen, D. L.; Zhang, J. W.; Zhu, W. D.; Zhang, F. M. Boosted catalytic hydrogenation performance using isolated Co sites anchored on nitrogen-incorporated hollow porous carbon. J. Phys. Chem. C 2021, 125, 5088–5098.

51

Wu, C.; Zhu, C. Y.; Liu, K. K.; Yang, S. W.; Sun, Y.; Zhu, K.; Cao, Y. L.; Zhang, S.; Zhuo, S. F.; Zhang, M. et al. Nano-pyramid-type Co-ZnO/NC for hydrogen transfer cascade reaction between alcohols and nitrobenzene. Appl. Catal. B Environ. 2022, 300, 120288.

52

Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

53

Zhao, X. M.; Jin, Y.; Zhang, F. M.; Zhong, Y. J.; Zhu, W. D. Catalytic hydrogenation of 2, 3, 5-trimethylbenzoquinone over Pd nanoparticles confined in the cages of MIL-101(Cr). Chem. Eng. J. 2014, 239, 33–41.

54

Föttinger, K. PdZn based catalysts: Connecting electronic and geometric structure with catalytic performance. Catalysis 2013, 25, 77–117.

55

Mashkovsky, I. S.; Markov, P. V.; Bragina, G. O.; Baeva, G. N.; Rassolov, A. V.; Bukhtiyarov, A. V.; Prosvirin, I. P.; Bukhtiyarov, V. I.; Stakheev, A. Y. PdZn/α-Al2O3 catalyst for liquid-phase alkyne hydrogenation: Effect of the solid-state alloy transformation into intermetallics. Mendeleev Commun. 2018, 28, 152–154.

56

Glyzdova, D. V.; Khramov, E. V.; Smirnova, N. S.; Prosvirin, I. P.; Bukhtiyarov, A. V.; Trenikhin, M. V.; Gulyaeva, T. I.; Vedyagin, A. A.; Shlyapin, D. A.; Lavrenov, A. V. Study on the active phase formation of Pd-Zn/Sibunit catalysts during the thermal treatment in hydrogen. Appl. Surf. Sci. 2019, 483, 730–741.

57

Crespo-Quesada, M.; Yarulin, A.; Jin, M. S.; Xia, Y. N.; Kiwi-Minsker, L. Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: Which sites are most active and selective? J. Am. Chem. Soc. 2011, 133, 12787–12794.

58

Chen, Y. Z.; Cai, G. R.; Wang, Y. M.; Xu, Q.; Yu, S. H.; Jiang, H. L. Palladium nanoparticles stabilized with N-doped porous carbons derived from metal-organic frameworks for selective catalysis in biofuel upgrade: The role of catalyst wettability. Green Chem. 2016, 18, 1212–1217.

59

Vernuccio, S.; Von Rohr, P. R.; Medlock, J. General kinetic modeling of the selective hydrogenation of 2-methyl-3-butyn-2-ol over a commercial palladium-based catalyst. Ind. Eng. Chem. Res. 2015, 54, 11543–11551.

60

Prestianni, A.; Crespo-Quesada, M.; Cortese, R.; Ferrante, F.; Kiwi-Minsker, L.; Duca, D. Structure sensitivity of 2-methyl-3-butyn-2-ol hydrogenation on Pd: Computational and experimental modeling. J. Phys. Chem. C 2014, 118, 3119–3128.

61

Brix, F.; Desbuis, V.; Piccolo, L.; Gaudry, É. Tuning adsorption energies and reaction pathways by alloying: PdZn versus Pd for CO2 hydrogenation to methanol. J. Phys. Chem. Lett. 2020, 11, 7672–7678.

62

Hu, J. H.; Guo, W. Y.; Liu, Z. H.; Lu, X. Q.; Zhu, H. Y.; Shi, F.; Yan, J. Q.; Jiang, R. B. Unraveling the mechanism of the Zn-improved catalytic activity of pd-based catalysts for water-gas shift reaction. J. Phys. Chem. C 2016, 120, 20181–20191.

63

Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

File
12274_2021_3971_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 August 2021
Revised: 01 November 2021
Accepted: 02 November 2021
Published: 13 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We thank the financial supports from the National Natural Science Foundation of China (No. 21576243), and the Natural Science Foundation of Zhejiang Province (Nos. LY18B060006, LY17B060001, and LY21B030003).

Return