AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Filling Ti3C2Tx nanosheets into melamine foam towards a highly compressible all-in-one supercapacitor

Rui Guo1Xiying Han1Peng Yuan1Xuexia He1Qi Li1Jie Sun1Liqin Dang1Zonghuai Liu1Yating Zhang2( )Zhibin Lei1( )
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
College of Chemistry and Chemical Engineering, Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an University of Science and Technology, Xi’an 710054, China
Show Author Information

Graphical Abstract

A facile yet efficient dip-soaking strategy has been developed to construct an all-in-one supercapacitor using the melamine foam (MF) as compressible scaffolds and separator, and Ti3C2Tx nanosheets as the electroactive electrode. The all-in-one supercapacitor exhibits fast ion and electron kinetics and delivers extraordinary cycling performance during continuous compression-release cycles.

Abstract

The development of compressible supercapacitors strongly relies on the design of electrode materials combining superior compressibility, high conductivity with the stable electrochemical cycling performance. In this work, we report a facile yet scalable strategy to construct a highly compressible supercapacitor by integrating the current collector, active materials and the separator into one device. We use the highly compressive melamine foam (MF) as scaffold and the Ti3C2Tx nanosheets as the active materials. Filling the few-layer Ti3C2Tx nanosheets into the skeleton of MF by capillary force followed by freeze-drying yields the MF/Ti3C2Tx composite with superior structural integrity that can be compressed at a large strain of 50% for 100 cycles. The electrochemical performances of the all-in-one supercapacitor were systematically investigated under diverse compression strains. The improved conductivity and reduced ion diffusion length allow the all-in-one supercapacitor to exhibit fast ion and electron kinetics even at high strain of 60%, delivering a maximal volumetric specific energy of 0.37 mWh∙cm−3 at power density of 0.42 mW∙cm−3 and extraordinary cycling performance during the 2,500 compression cycles.

Electronic Supplementary Material

Download File(s)
12274_2021_3970_MOESM1_ESM.pdf (1.7 MB)

References

1

Li, H. F.; Tang, Z. J.; Liu, Z. X.; Zhi, C. Y. Evaluating flexibility and wearability of flexible energy storage devices. Joule 2019, 3, 613–619.

2

Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

3

Wang, D. H.; Han, C. P.; Mo, F. N.; Yang, Q.; Zhao, Y. W.; Li, Q.; Liang, G. J.; Dong, B. B.; Zhi, C. Y. Energy density issues of flexible energy storage devices. Energy Storage Mater. 2020, 28, 264–292.

4

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

5

Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

6

Zhang, C. J.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 2018, 28, 1705506.

7

Kurra, N.; Ahmed, B.; Gogotsi, Y.; Alshareef, H. N. MXene-on-paper coplanar microsupercapacitors. Adv. Energy Mater. 2016, 6, 1601372.

8

Song, W. J.; Lee, S.; Song, G.; Son, H. B.; Han, D. Y.; Jeong, I.; Bang, Y.; Park, S. Recent progress in aqueous based flexible energy storage devices. Energy Storage Mater. 2020, 30, 260–286.

9

Yuan, H.; Wang, G.; Zhao, Y. X.; Liu, Y.; Wu, Y.; Zhang, Y. G. A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 2020, 13, 1686–1692.

10

Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H. H.; Hu, C. G.; Jiang, C. C.; Jiang, L.; Cao, A. Y.; Qu, L. T. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 2013, 25, 591–595.

11

Sun, L.; Song, G. S.; Sun, Y. F.; Fu, Q.; Pan, C. X. MXene/N-doped carbon foam with three-dimensional hollow neuron-like architecture for freestanding, highly compressible all solid-state supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 44777–44788.

12

Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002–6008.

13

Gao, X.; Du, X.; Mathis, T. S.; Zhang, M. M.; Wang, X. H.; Shui, J. L.; Gogotsi, Y.; Xu, M. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 2020, 11, 6160.

14

Guo, R.; Li, J.; Jia, Y. F.; Xin, F. E.; Sun, J.; Dang, L. Q.; Liu, Z. H.; Lei, Z. B. Nitrogen-doped carbon sheets coated on CoNiO2@textile carbon as bifunctional electrodes for asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 4165–4174.

15

Pan, Z. H.; Yang, J.; Li, L. H.; Gao, X. R.; Kang, L. X.; Zhang, Y. F.; Zhang, Q. C.; Kou, Z. K.; Zhang, T.; Wei, L. et al. All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Mater. 2020, 25, 124–130.

16

Liu, Q. F.; Zang, L. M.; Qiao, X.; Qiu, J. H.; Wang, X.; Hu, L.; Yang, J.; Yang, C. Compressible all-in-one supercapacitor with adjustable output voltage based on polypyrrole-coated melamine foam. Adv. Electron. Mater. 2019, 5, 1900724.

17

Wang, X. J.; Wang, R.; Zhao, Z. F.; Bi, S. S.; Niu, Z. Q. Controllable spatial engineering of flexible all-in-one graphene-based supercapacitors with various architectures. Energy Storage Mater. 2019, 23, 269–276.

18

Lu, C.; Chen, X. An interfacial polymerization strategy towards high-performance flexible supercapacitors. J. Mater. Chem. A 2019, 7, 20158–20161.

19

VahidMohammadi, A. V.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

20

Zhang, C. F.; Ma, Y. L.; Zhang, X. T.; Abdolhosseinzadeh, S.; Sheng, H. W.; Lan, W.; Pakdel, A.; Heier, J.; Nüesch, F. Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 2020, 3, 29–55.

21

Aslam, M. K.; Niu, Y. B.; Xu, M. W. MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 2021, 11, 2000681.

22

Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

23

Zhao, Q.; Zhu, Q. Z.; Liu, Y.; Xu, B. Status and prospects of MXene-based lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2100457.

24

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

25

Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72–133.

26

Zhang, Y. Z.; El-Demellawi, J. K.; Jiang, Q.; Ge, G.; Liang, H. F.; Lee, K.; Dong, X. C.; Alshareef, H. N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229–7251.

27

Wei, Y.; Zhang, P.; Soomro, R. A.; Zhu, Q. Z.; Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148.

28

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

29

Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

30

Zhu, Q. Z.; Li, J. P.; Simon, P.; Xu, B. Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Mater. 2021, 35, 630–660.

31

Zhang, M.; Cao, J.; Wang, Y.; Song, J.; Jiang, T. C.; Zhang, Y. Y.; Si, W. M.; Li, X. W.; Meng, B.; Wen, G. W. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors. Nano Res. 2021, 14, 699–706.

32

Gund, G. S.; Park, J. H.; Harpalsinh, R.; Kota, M.; Shin, J. H.; Kim, T. I.; Gogotsi, Y.; Park, H. S. MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule 2019, 3, 164–176.

33

Zhang, P.; Soomro, R. A.; Guan, Z. R. X.; Sun, N.; Xu, B. 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage. Energy Storage Mater. 2020, 29, 163–171.

34

Cao, B.; Liu, H.; Zhang, P.; Sun, N.; Zheng, B.; Li, Y.; Du, H. L.; Xu, B. Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes. Adv. Funct. Mater. 2021, 31, 2102126.

35

Shang, T. X.; Lin, Z. F.; Qi, C. S.; Liu, X. C.; Li, P.; Tao, Y.; Wu, Z. T.; Li, D. W.; Simon, P.; Yang, Q. H. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960.

36

Li, K.; Liang, M. Y.; Wang, H.; Wang, X. H.; Huang, Y. S.; Coelho, J.; Pinilla, S.; Zhang, Y. L.; Qi, F. W.; Nicolosi, V. et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 2020, 30, 2000842.

37

Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.

38

Wu, Z. T.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Yang, Q. H. The assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077.

39

Liang, X.; Nie, K. W.; Ding, X.; Dang, L. Q.; Sun, J.; Shi, F.; Xu, H.; Jiang, R. B.; He, X. X.; Liu, Z. H. et al. Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel-cobalt sulfide nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 10087–10095.

40

Shi, H. D.; Yue, M.; Zhang, C. J.; Dong, Y. F.; Lu, P. F.; Zheng, S. H.; Huang, H. J.; Chen, J.; Wen, P. C.; Xu, Z. C. et al. 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 2020, 14, 8678–8688.

41

Liang, X.; Jia, Y. F.; Liu, Z. H.; Lei, Z. B. Growing iron oxide nanosheets on highly compressible carbon sponge for enhanced capacitive performance. Acta Phys. -Chim. Sin. 2020, 36, 1903034.

42

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

43

Lee, J. S.; Kim, S. I.; Yoon, J. C.; Jang, J. H. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 2013, 7, 6047–6055.

44

Mai, L. Q.; Minhas-Khan, A.; Tian, X. C.; Hercule, K. M.; Zhao, Y. L.; Lin, X.; Xu, X. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat. Commun. 2013, 4, 2923.

45

Zhi, L.; Zhang, W. L.; Dang, L. Q.; Sun, J.; Shi, F.; Xu, H.; Liu, Z. H.; Lei, Z. B. Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance. J. Power Sources 2018, 387, 108–116.

46

Taberna, P. L.; Portet, C.; Simon, P. Electrode surface treatment and electrochemical impedance spectroscopy study on carbon/carbon supercapacitors. Appl. Phys. A 2006, 82, 639–646.

47

Niu, F.; Guo, R.; Dang, L. Q.; Sun, J.; Li, Q.; He, X. X.; Liu, Z. H.; Lei, Z. B. Coral-like PEDOT nanotube arrays on carbon fibers as high-rate flexible supercapacitor electrodes. ACS Appl. Energy Mater. 2020, 3, 7794–7803.

48

Zhang, X. F.; Zou, M. Q.; Qi, X. H.; Liu, F.; Zhu, X. H.; Zhao, B. H. Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy. J. Raman Spectrosc. 2010, 41, 1655–1660.

49

Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

50

Zhang, P.; Zhu, Q. Z.; Soomro, R. A.; He, S. Y.; Sun, N.; Qiao, N.; Xu, B. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater. 2020, 30, 2000922.

51

Zhang, H.; Yang, L.; Zhang, P. G.; Lu, C. J.; Sha, D. W.; Yan, B. Z.; He, W.; Zhou, M.; Zhang, W.; Pan, L. et al. MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: Enhanced polysulfide mediation via defect engineering. Adv. Mater. 2021, 33, 2008447.

52

Jiao, L.; Zhang, C.; Geng, C. N.; Wu, S. C.; Li, H.; Lv, W.; Tao, Y.; Chen, Z. J.; Zhou, G. M.; Li, J. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.

53

Hu, M. M.; Cheng, R. F.; Li, Z. J.; Hu, T.; Zhang, H.; Shi, C.; Yang, J. X.; Cui, C.; Zhang, C.; Wang, H. L. et al. Interlayer engineering of Ti3C2Tx MXenes towards high capacitance supercapacitors. Nanoscale 2020, 12, 763–771.

54

Zhang, J. Z.; Kong, N.; Hegh, D.; Usman, K. A. S.; Guan, G. W.; Qin, S.; Jurewicz, I.; Yang, W. R.; Razal, J. M. Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Appl. Mater. Interfaces 2020, 12, 34032–34040.

55

Zhao, R. Z.; Di, H. X.; Hui, X. B.; Zhao, D. Y.; Wang, R. T.; Wang, C. X.; Yin, L. W. Self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ. Sci. 2020, 13, 246–257.

56

Jiang, D. G.; Li, C. W.; Yang, W. R.; Zhang, J. Z.; Liu, J. Q. Fabrication of an arbitrary-shaped and nitrogen-doped graphene aerogel for highly compressible all solid-state supercapacitors. J. Mater. Chem. A 2017, 5, 18684–18690.

57

Fu, M.; Lv, R. T.; Lei, Y.; Terrones, M. Ultralight flexible electrodes of nitrogen-doped carbon macrotube sponges for high-performance supercapacitors. Small 2021, 17, 2004827.

58

Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

59

Sun, H. Y.; Xu, Z.; Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 2013, 25, 2554–2560.

60

Mu, X. P.; Wang, D. S.; Du, F.; Chen, G.; Wang, C. Z.; Wei, Y. J.; Gogotsi, Y.; Gao, Y.; Dall'Agnese, Y. Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv. Funct. Mater. 2019, 29, 1902953.

61

Ando, Y.; Okubo, M.; Yamada, A.; Otani, M. Capacitive versus pseudocapacitive storage in MXene. Adv. Funct. Mater. 2020, 30, 2000820.

62

Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A. L.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412.

63

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

64

Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li+ ion insertion in TiO2 (anatase). 2. voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.

65

Ardizzone, S.; Fregonara, G.; Trasatti, S. “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 1990, 35, 263–267.

66

Yang, C. H.; Tang, Y.; Tian, Y. P.; Luo, Y. Y.; He, Y. C.; Yin, X. T.; Que, W. X. Achieving of flexible, free-standing, ultracompact delaminated titanium carbide films for high volumetric performance and heat-resistant symmetric supercapacitors. Adv. Funct. Mater. 2018, 28, 1705487.

67

Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.

68

Niu, F.; Han, X. Y.; Sun, H.; Li, Q.; He, X. X.; Liu, Z. H.; Sun, J.; Lei, Z. B. Connecting PEDOT nanotube arrays by polyaniline coating toward a flexible and high-rate supercapacitor. ACS Sustainable Chem. Eng. 2021, 9, 4146–4156.

69

Kong, L.; Chen, X.; Li, B. Q.; Peng, H. J.; Huang, J. Q.; Xie, J.; Zhang, Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705219.

70

Sheng, L. Z.; Chang, J.; Jiang, L. L.; Jiang, Z. M.; Liu, Z.; Wei, T.; Fan, Z. J. Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 2018, 28, 1800597.

71

Wang, F.; Zhang, L.; Zhang, Q.; Yang, J. J.; Duan, G. G.; Xu, W. H.; Yang, F.; Jiang, S. H. Electrode thickness design toward bulk energy storage devices with high areal/volumetric energy density. Appl. Energy 2021, 289, 116734.

72

Zeng, J.; Dong, L. B.; Sha, W. X.; Wei, L.; Guo, X. Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chem. Eng. J. 2020, 383, 123098.

73

Yang, Z. K.; Ma, J.; Bai, B. R.; Qiu, A. D.; Losic, D.; Shi, D. J.; Chen, M. Q. Free-standing PEDOT/polyaniline conductive polymer hydrogel for flexible solid-state supercapacitors. Electrochim. Acta 2019, 322, 134769.

74

Chen, G. Y.; Ai, Y. L.; Mugaanire, I. T.; Ma, W. J.; Hsiao, B. S.; Hou, K.; Zhu, M. F. A simple inorganic hybrids strategy for graphene fibers fabrication with excellent electrochemical performance. J. Power Sources 2020, 450, 227637.

Nano Research
Pages 3254-3263
Cite this article:
Guo R, Han X, Yuan P, et al. Filling Ti3C2Tx nanosheets into melamine foam towards a highly compressible all-in-one supercapacitor. Nano Research, 2022, 15(4): 3254-3263. https://doi.org/10.1007/s12274-021-3970-2
Topics:

956

Views

28

Crossref

26

Web of Science

26

Scopus

2

CSCD

Altmetrics

Received: 16 August 2021
Revised: 08 October 2021
Accepted: 27 October 2021
Published: 03 December 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return