Journal Home > Volume 15 , Issue 4

Phototransistors that can detect visible light have been fabricated using solution processed zinc oxide channel / zirconium oxide gate insulator thin film transistors (TFTs) and room temperature synthesized perovskite quantum dots (PeQDs) as active layer. Typical ZnO thin film transistors did not show a photocurrent under visible light illumination. However, ZnO TFTs decorated with PeQDs exhibited enhanced photocurrent upon exposure to visible light. The device had a responsivity of 567 A/W (617 A/W), a high detectivity of 6.59 × 1013 Jones (1.85 × 1014 J) and a high sensitivity of 107 (108) under green (blue) light at a low drain voltage of 0.1 V. The high photo-responsivity and detectivity under green light resulted from the combination of short ligands in the QDs films and the high mobility of the spray coated ZnO films. Those results are relevant for the development of low cost and low energy consumption phototransistors working in the visible range.


menu
Abstract
Full text
Outline
About this article

Solution processed high performance perovskite quantum dots/ZnO phototransistors

Show Author's information Md Mehedi Hasan1Eric Moyen1( )Jewel Kumer Saha1Md Mobaidul Islam1Arqum Ali1Jin Jang1( )
Advanced Display Research Center (ADRC), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea

Abstract

Phototransistors that can detect visible light have been fabricated using solution processed zinc oxide channel / zirconium oxide gate insulator thin film transistors (TFTs) and room temperature synthesized perovskite quantum dots (PeQDs) as active layer. Typical ZnO thin film transistors did not show a photocurrent under visible light illumination. However, ZnO TFTs decorated with PeQDs exhibited enhanced photocurrent upon exposure to visible light. The device had a responsivity of 567 A/W (617 A/W), a high detectivity of 6.59 × 1013 Jones (1.85 × 1014 J) and a high sensitivity of 107 (108) under green (blue) light at a low drain voltage of 0.1 V. The high photo-responsivity and detectivity under green light resulted from the combination of short ligands in the QDs films and the high mobility of the spray coated ZnO films. Those results are relevant for the development of low cost and low energy consumption phototransistors working in the visible range.

Keywords: perovskite quantum dots, ZnO thin film transistors, photo-detectors, photo-transistors

References(59)

1

Yu, X. G.; Marks, T. J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383–396.

2
Shi, J. L.; Zhang, J. Y.; Yang, L.; Qu, M.; Qi, D. C.; Zhang, K. H. L. Wide bandgap oxide semiconductors: From materials physics to optoelectronic devices. Adv. Mater., in press, DOI: 10.1002/adma.202006230.
3

Fortunato, E. M. C.; Barquinha, P. M. C.; Pimentel, A. C. M. B. G.; Gonçalves, A. M. F.; Marques, A. J. S.; Martins, R. F. P.; Pereira, L. M. N. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl. Phys. Lett. 2004, 85, 2541–2543.

4

Hwang, D. K.; Lee, Y. T.; Lee, H. S.; Lee, Y. J.; Shokouh, S. H.; Kyhm, J. H.; Lee, J.; Kim, H. H.; Yoo, T. H.; Nam, S. H. et al. Ultrasensitive PbS quantum-dot-sensitized InGaZnO hybrid photoinverter for near-infrared detection and imaging with high photogain. NPG Asia Mater. 2016, 8, e233.

5

Yu, J. J.; Javaid, K.; Liang, L. Y.; Wu, W. H.; Liang, Y.; Song, A. R.; Zhang, H. L.; Shi, W.; Chang, T. C.; Cao, H. T. High-performance visible-blind ultraviolet photodetector based on IGZO TFT coupled with p-n heterojunction. ACS Appl. Mater. Interfaces 2018, 10, 8102–8109.

6

Zhao, C. M.; Kanicki, J. Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor X-ray imager for digital breast tomosynthesis. Med. Phys. 2014, 41, 091902.

7

Lujan, R. A.; Street, R. A. Flexible X-ray detector array fabricated with oxide thin-film transistors. IEEE Electron Device Lett. 2012, 33, 688–690.

8

Jeon, S.; Ahn, S. E.; Song, I.; Kim, C. J.; Chung, U. I.; Lee, E.; Yoo, I.; Nathan, A.; Lee, S.; Ghaffarzadeh, K. et al. Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 2012, 11, 301–305.

9

Saha, J. K.; Bukke, R. N.; Mude, N. N.; Jang, J. Significant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors. Sci. Rep. 2020, 10, 8999.

10

Hasan, M.; Ahn, C. W.; Kim, T. H.; Jang, J. Solution processed high performance ferroelectric Hf0.5Zr0.5O2 thin film transistor on glass substrate. Appl. Phys. Lett. 2021, 118, 152901.

11

Islam, M.; Saha, J. K.; Bukke, R. N.; Hasan, M.; Billah, M. M.; Mude, N. N.; Ali, A.; Jang, J. Solution-processed La alloyed ZrOx high-k dielectric for high-performance ZnO thin-film transistors. IEEE Electron Device Lett. 2020, 41, 1021–1024.

12

Saha, J. K.; Billah, M. M.; Bukke, R. N.; Kim, Y. G.; Mude, N. N.; Siddik, A. B.; Islam, M.; Do, Y.; Choi, M.; Jang, J. Highly stable, nanocrystalline, ZnO thin-film transistor by spray pyrolysis using high-k dielectric. IEEE Trans. Electron Devices 2020, 67, 1021–1026.

13

Chang, S. J.; Chang, T. H.; Weng, W. Y.; Chiu, C. J.; Chang, S. P. Amorphous InGaZnO ultraviolet phototransistors with a thin Ga2O3 layer. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 3803605.

14

Ivanoff Reyes, P.; Ku, C. J.; Duan, Z. Q.; Xu, Y.; Garfunkel, E.; Lu, Y. C. Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector. Appl. Phys. Lett. 2012, 101, 031118.

15

Yu, J. L.; Shin, S. W.; Lee, K. H.; Park, J. S.; Kang, S. J. Visible-light phototransistors based on InGaZnO and silver nanoparticles. J. Vac. Sci. Technol. B 2015, 33, 061211.

16

Park, S. J.; Lee, S. M.; Kang, S. J.; Lee, K. H.; Park, J. S. Plasmon-enhanced photocurrent of Ge-doped InGaO thin film transistors using silver nanoparticles. J. Vac. Sci. Technol. A 2015, 33, 021101.

17

Cho, N. K.; Lee, S. M.; Song, K.; Kang, S. J. Enhanced quantum-dot light-emitting diodes using gold nanorods. J. Korean Phys. Soc. 2015, 67, 1667–1671.

18

Lee, S. M.; Shin, D.; Cho, N. K.; Yi, Y.; Kang, S. J. A solution-processable inorganic hole injection layer that improves the performance of quantum-dot light-emitting diodes. Curr. Appl. Phys. 2017, 17, 442–447.

19

Lee, S. M.; Park, S. J.; Lee, K. H.; Park, J. S.; Park, S.; Yi, Y.; Kang, S. J. Enhanced photocurrent of Ge-doped InGaO thin film transistors with quantum dots. Appl. Phys. Lett. 2015, 106, 031112.

20

Kim, J.; Kwon, S. M.; Kang, Y. K.; Kim, Y. H.; Lee, M. J.; Han, K.; Facchetti, A.; Kim, M. G.; Park, S. K. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 2019, 5, eaax8801.

21

Shin, S. W.; Lee, K. H.; Park, J. S.; Kang, S. J. Highly transparent, visible-light photodetector based on oxide semiconductors and quantum dots. ACS Appl. Mater. Interfaces 2015, 7, 19666–19671.

22

Kim, J.; Kwon, S. M.; Jo, C.; Heo, J. S.; Kim, W. B.; Jung, H. S.; Kim, Y. H.; Kim, M. G.; Park, S. K. Highly efficient photo-induced charge separation enabled by metal-chalcogenide interfaces in quantum-dot/metal-oxide hybrid phototransistors. ACS Appl. Mater. Interfaces 2020, 12, 16620–16629.

23

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

24

Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

25

Yu, H.; Liu, X. Y.; Yan, L. Z.; Zou, T. Y.; Yang, H.; Liu, C.; Zhang, S. D.; Zhou, H. Enhanced UV−visible detection of InGaZnO phototransistors via CsPbBr3 quantum dots. Semicond. Sci. Technol. 2019, 34, 125013.

26

Du, S. N.; Li, G. T.; Cao, X. H.; Wang, Y.; Lu, H. L.; Zhang, S. D.; Liu, C.; Zhou, H. Oxide semiconductor phototransistor with organolead trihalide perovskite light absorber. Adv. Electron. Mater. 2017, 3, 1600325.

27

Zhang, X.; Li, Q.; Yan, S. K.; Lei, W.; Chen, J.; Qasim, K. A novel phototransistor device with dual active layers composited of CsPbBr3 and ZnO quantum dots. Materials 2019, 12, 1215.

28

Liu, H.; Zhang, X. W.; Zhang, L. Q.; Yin, Z. G.; Wang, D. G.; Meng, J. H.; Jiang, Q.; Wang, Y.; You, J. B. A high-performance photodetector based on an inorganic perovskite-ZnO heterostructure. J. Mater. Chem. C 2017, 5, 6115–6122.

29

Li, Y.; Shi, Z. F.; Li, S.; Lei, L. Z.; Ji, H. F.; Wu, D.; Xu, T. T.; Tian, Y. T.; Li, X. J. High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr3 thin films. J. Mater. Chem. C 2017, 5, 8355–8360.

30

Yu, J. C.; Chen, X.; Wang, Y.; Zhou, H.; Xue, M. N.; Xu, Y.; Li, Z. S.; Ye, C.; Zhang, J.; van Aken, P. A. et al. A high-performance self-powered broadband photodetector based on a CH3NH3PbI3 perovskite/ZnO nanorod array heterostructure. J. Mater. Chem. C 2016, 4, 7302–7308.

31

Liu, X.; Tao, Z.; Kuang, W. J.; Huang, Q. Q.; Li, Q.; Chen, J.; Lei, W. Dual-gate phototransistor with perovskite quantum dots-PMMA photosensing nanocomposite insulator. IEEE Electron Device Lett. 2017, 38, 1270–1273.

32

Liu, X.; Kuang, W. J.; Ni, H. B.; Tao, Z.; Huang, Q. Q.; Chen, J.; Liu, Q. Q.; Chang, J. H.; Lei, W. A highly sensitive and fast graphene nanoribbon/CsPbBr3 quantum dot phototransistor with enhanced vertical metal oxide heterostructures. Nanoscale 2018, 10, 10182–10189.

33

Miao, J. L.; Zhang, F. J. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 2019, 7, 1741–1791.

34

Tang, R. D.; Han, S. C.; Teng, F.; Hu, K.; Zhang, Z. M.; Hu, M. X.; Fang, X. S. Size-controlled graphene nanodot arrays/ZnO hybrids for high-performance UV photodetectors. Adv. Sci. 2018, 5, 1700334.

35

Peng, W. B.; Yu, R. M.; Wang, X. F.; Wang, Z. N.; Zou, H. Y.; He, Y. N.; Wang, Z. L. Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nano Res. 2016, 9, 3695–3704.

36

Li, Z. Q.; Li, Z. L.; Shi, Z. F.; Fang, X. S. Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu2I3 single crystal with 1D electronic structure. Adv. Funct. Mater. 2020, 30, 2002634.

37

Li, S. X.; Xu, Y. S.; Li, C. L.; Guo, Q.; Wang, G.; Xia, H.; Fang, H. H.; Shen, L.; Sun, H. B. Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year. Adv. Mater. 2020, 32, 2001998.

38

Wang, H. P.; Li, S. Y.; Liu, X. Y.; Shi, Z. F.; Fang, X. S.; He, J. H. Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 2021, 33, 2003309.

39

Zhang, Y. Q.; Ma, Y.; Wang, Y. X.; Zhang, X. D.; Zuo, C. T.; Shen, L.; Ding, L. M. Lead-free perovskite photodetectors: Progress, challenges, and opportunities. Adv. Mater. 2021, 33, 2006691.

40

Li, C. L.; Ma, Y.; Xiao, Y. F.; Shen, L.; Ding, L. M. Advances in perovskite photodetectors. InfoMat 2020, 2, 1247–1256.

41

Moyen, E.; Kanwat, A.; Cho, S.; Jun, H.; Aad, R.; Jang, J. Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices. Nanoscale 2018, 10, 8591–8599.

42

Nugraha, M. I.; Yarali, E.; Firdaus, Y.; Lin, Y. B.; El-Labban, A.; Gedda, M.; Lidorikis, E.; Yengel, E.; Faber, H.; Anthopoulos, T. D. Rapid photonic processing of high-electron-mobility PbS colloidal quantum dot transistors. ACS Appl. Mater. Interfaces 2020, 12, 31591–31600.

43

Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 2017, 3, eaao4204.

44

Kirmani, A. R.; Walters, G.; Kim, T.; Sargent, E. H.; Amassian, A. Optimizing solid-state ligand exchange for colloidal quantum dot optoelectronics: How much is enough? ACS Appl. Energy Mater. 2020, 3, 5385–5392.

45

Moyen, E.; Jun, H.; Kim, H. M.; Jang, J. Surface engineering of room temperature-grown inorganic perovskite quantum dots for highly efficient inverted light-emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 42647–42656.

46

Makarov, N. S.; Guo, S. J.; Isaienko, O.; Liu, W. Y.; Robel, I.; Klimov, V. I. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett. 2016, 16, 2349–2362.

47

Lee, Y.; Kwon, J.; Hwang, E.; Ra, C. H.; Yoo, W. J.; Ahn, J. H.; Park, J. H.; Cho, J. H. High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 2015, 27, 41–46.

48

Ma, C.; Shi, Y. M.; Hu, W. J.; Chiu, M. H.; Liu, Z. X.; Bera, A.; Li, F.; Wang, H.; Li, L. J.; Wu, T. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 2016, 28, 3683–3689.

49

Kang, D. H.; Pae, S. R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J. W.; Yu, J. S.; Lee, S.; Shin, B.; Park, J. H. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 2016, 28, 7799–7806.

50

Wang, Y.; Fullon, R.; Acerce, M.; Petoukhoff, C. E.; Yang, J.; Chen, C. G.; Du, S. N.; Lai, S. K.; Lau, S. P.; Voiry, D. et al. Solution-processed MoS2/organolead trihalide perovskite photodetectors. Adv. Mater. 2017, 29, 1603995.

51

Song, J. Z.; Li, J. H.; Xu, L. M.; Li, J. H.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11. 6% perovskite QLEDs. Adv. Mater. 2018, 30, 1800764.

52

van Dijken, A.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, A. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J. Phys. Chem. B 2000, 104, 1715–1723.

53

Jacobsson, T. J.; Edvinsson, T. A spectroelectrochemical method for locating fluorescence trap states in nanoparticles and quantum dots. J. Phys. Chem. C 2013, 117, 5497–5504.

54

Moyen, E.; Kim, J. H.; Kim, J.; Jang, J. ZnO nanoparticles for quantum-dot-based light-emitting diodes. ACS Appl. Nano Mater. 2020, 3, 5203–5211.

55

Park, S.; Kim, B. J.; Kim, T. Y.; Jung, E. Y.; Lee, K. M.; Hong, J. A.; Jeon, W.; Park, Y.; Kang, S. J. Improving the photodetection and stability of a visible-light QDs/ZnO phototransistor via an Al2O3 additional layer. J. Mater. Chem. C 2021, 9, 2550–2560.

56

Ryu, B.; Noh, H. K.; Choi, E. A.; Chang, K. J. O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors. Appl. Phys. Lett. 2010, 97, 022108.

57

Pattanasattayavong, P.; Rossbauer, S.; Thomas, S.; Labram, J. G.; Snaith, H. J.; Anthopoulos, T. D. Solution-processed dye-sensitized ZnO phototransistors with extremely high photoresponsivity. J. Appl. Phys. 2012, 112, 074507.

58

Na, H. J.; Cho, N. K.; Park, J.; Lee, S. E.; Lee, E. G.; Im, C.; Kim, Y. S. A visible light detector based on a heterojunction phototransistor with a highly stable inorganic CsPbIxBr3−x perovskite and In-Ga-Zn-O semiconductor double-layer. J. Mater. Chem. C 2019, 7, 14223–14231.

59

Hou, Y.; Wang, L. M.; Zou, X. M.; Wan, D.; Liu, C.; Li, G. L.; Liu, X. Q.; Liu, Y. F.; Jiang, C. Z.; Ho, J. C. et al. Substantially improving device performance of all-inorganic perovskite-based phototransistors via indium tin oxide nanowire incorporation. Small 2020, 16, 1905609.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 August 2021
Revised: 05 October 2021
Accepted: 27 October 2021
Published: 07 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the Technology Innovation Program (No. 20011317), Development of an adhesive material capable of morphing more than 50% for flexible devices with a radius of curvature of 1 mm or less funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Return