Journal Home > Volume 15 , Issue 4

Environmentally friendly biomimetic materials with good deformability, high pressure-sensitive performance, and excellent biocompatibility are highly attractive for health monitoring, but to simultaneously meet these requirements is a formidable challenge. In this study, biocompatible MXene quantum dot (MQD)/watermelon peel (WMP) aerogels were obtained by immersing freeze-dried fresh watermelon peel into the quantum dot dispersion. The resulting bio-aerogels with a three-dimensional (3D) porous network structure exhibited a low in elasticity modulus (0.03 MPa) and limit of detection (0.4 Pa) and it showed biocompatibility. With a maximum pressure-sensitive response of 323 kPa-1, the 3D porous MQD/WMP aerogels exhibited good stability. In addition, the sensing signals could be displayed on mobile phones through a Bluetooth module to monitor human motion (pulse, sound, and walking) in real time. More importantly, the MQD/WMP aerogels exhibited excellent biocompatibility in a cytotoxicity test, thus decreasing the safety risk when they are applied to human skin. The finding in this study will facilitate the fabrication of high-performance biomimetic MXene active matrices, which are derived from natural biological materials, for flexible electronics.

File
12274_2021_3967_MOESM1_ESM.pdf (929.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 August 2021
Revised: 25 October 2021
Accepted: 31 October 2021
Published: 25 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62174152, 61625404, and 61888102) and Foshan Innovative and Entrepreneurial Research Team Program (No. 2018IT100031).

Data Availability: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Return