Journal Home > Volume 15 , Issue 4

Advanced molecular dynamics (MD) simulation and infrared (IR) spectroscopy have been widely adopted to reveal the detailed dynamic process of high-speed selective permeability of potassium channels. Yet these MD simulations cannot avoid the choice of empirical molecular force fields and high transmembrane voltages (as driving electric fields for ions) far exceeding physiological levels. Moreover, the IR spectroscopy method usually requires isotope labels for carbonyl groups of the channels, which may change the original permeation process. Here, we build the terahertz (THz) trapped ion model for the selectivity filter (SF) of potassium channels KcsA based on the density functional theory (DFT) calculation of ion potentials. In this model, the zero-point energy of trapped ions and quantum tunneling effect provide the physical basis for near diffusion limited permeation rates of ions and explain the high driving electric field in MD simulations. Quantitative calculations of zero-point energy and tunneling probability show that the quantum effect assisted knock-on mechanism may help to realize the physiological functions of potassium channels. Furthermore, based on the trapped ion model, we calculated the ion decoherence timescale under the influence of protein environmental noise. We use the quantum optics method to describe the interaction between THz waves and the trapped ion. Then the novel THz spectroscopy approaches through the THz resonance fluorescence and the intense field non-resonant effect are presented theoretically. These are expected to be isotope label-free detective methods of the rapid ion permeation dynamics.


menu
Abstract
Full text
Outline
About this article

THz trapped ion model and THz spectroscopy detection of potassium channels

Show Author's information Kaicheng Wang1Shaomeng Wang1( )Lixia Yang2Zhe Wu2Baoqing Zeng1Yubin Gong1( )
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

Advanced molecular dynamics (MD) simulation and infrared (IR) spectroscopy have been widely adopted to reveal the detailed dynamic process of high-speed selective permeability of potassium channels. Yet these MD simulations cannot avoid the choice of empirical molecular force fields and high transmembrane voltages (as driving electric fields for ions) far exceeding physiological levels. Moreover, the IR spectroscopy method usually requires isotope labels for carbonyl groups of the channels, which may change the original permeation process. Here, we build the terahertz (THz) trapped ion model for the selectivity filter (SF) of potassium channels KcsA based on the density functional theory (DFT) calculation of ion potentials. In this model, the zero-point energy of trapped ions and quantum tunneling effect provide the physical basis for near diffusion limited permeation rates of ions and explain the high driving electric field in MD simulations. Quantitative calculations of zero-point energy and tunneling probability show that the quantum effect assisted knock-on mechanism may help to realize the physiological functions of potassium channels. Furthermore, based on the trapped ion model, we calculated the ion decoherence timescale under the influence of protein environmental noise. We use the quantum optics method to describe the interaction between THz waves and the trapped ion. Then the novel THz spectroscopy approaches through the THz resonance fluorescence and the intense field non-resonant effect are presented theoretically. These are expected to be isotope label-free detective methods of the rapid ion permeation dynamics.

Keywords: density functional theory (DFT) calculation, potassium channels, trapped ions, zero-point energy, quantum tunneling effect, terahertz spectrum

References(57)

1

Flood, E.; Boiteux, C.; Lev, B.; Vorobyov, I.; Allen, T. W. Atomistic simulations of membrane ion channel conduction, gating, and modulation. Chem. Rev. 2019, 119, 7737–7832.

2

Catterall, W. A.; Wisedchaisri, G.; Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 2017, 13, 455–463.

3

Hamill, O. P.; Marty, A.; Neher, E.; Sakmann, B.; Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflȹgers Archiv 1981, 391, 85–100.

4

Hodgkin, A. L.; Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544.

5

Hodgkin, A. L.; Katz, B. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 1949, 108, 37–77.

6

Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A. L.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69–77.

7

MacKinnon, R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew. Chem., Int. Ed. 2004, 43, 4265–4277.

8

Zhou, Y. F.; MacKinnon, R. The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 2003, 333, 965–975.

9

Morais-Cabral, J. H.; Zhou, Y. F.; MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 2001, 414, 37–42.

10

Åqvist, J.; Luzhkov, V. Ion permeation mechanism of the potassium channel. Nature 2000, 404, 881–884.

11

Fayer, M. D. Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy. Annu. Rev. Phys. Chem. 2009, 60, 21–38.

12

Gouaux, E.; MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 2005, 310, 1461–1465.

13

Kopec, W.; Köpfer, D. A.; Vickery, O. N.; Bondarenko, A. S.; Jansen, T. L. C.; de Groot, B. L.; Zachariae, U. Direct knock-on of desolvated ions governs strict ion selectivity in K+ channels. Nat. Chem. 2018, 10, 813–820.

14

Köpfer, D. A.; Song, C.; Gruene, T.; Sheldrick, G. M.; Zachariae, U.; de Groot, B. L. Ion permeation in K+ channels occurs by direct Coulomb knock-on. Science 2014, 346, 352–355.

15

Kratochvil, H. T.; Carr, J. K.; Matulef, K.; Annen, A. W.; Li, H.; Maj, M.; Ostmeyer, J.; Serrano, A. L.; Raghuraman, H.; Moran, S. D. et al. Instantaneous ion configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 2016, 353, 1040–1044.

16

DeMarco, K. R.; Bekker, S.; Vorobyov, I. Challenges and advances in atomistic simulations of potassium and sodium ion channel gating and permeation. J. Physiol. 2019, 597, 679–698.

17

Jensen, M. Ø.; Jogini, V.; Eastwood, M. P.; Shaw, D. E. Atomic-level simulation of current-voltage relationships in single-file ion channels. J. Gen. Physiol. 2013, 141, 619–632.

18

Lambert, N.; Chen, Y. N.; Cheng, Y. C.; Li, C. M.; Chen, G. Y.; Nori, F. Quantum biology. Nat. Phys. 2013, 9, 10–18.

19

Romero, E.; Novoderezhkin, V. I.; van Grondelle, R. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 2017, 543, 355–365.

20

Cha, Y.; Murray, C. J.; Klinman, J. P. Hydrogen tunneling in enzyme reactions. Science 1989, 243, 1325–1330.

21

Balantekin, A. B.; Takigawa, N. Quantum tunneling in nuclear fusion. Rev. Mod. Phys. 1998, 70, 77–100.

22

Hopfield, J. J. Electron transfer between biological molecules by thermally activated tunneling. Proc. Natl. Acad. Sci. USA 1974, 71, 3640–3644.

23

Marcus, R. A. Electron transfer reactions in chemistry: Theory and experiment (Nobel Lecture). Angew. Chem., Int. Ed. 1993, 32, 1111–1121.

24

Klinman, J. P.; Kohen, A. Hydrogen tunneling links protein dynamics to enzyme catalysis. Annu. Rev. Biochem. 2013, 8, 471–496.

25

Kolesnikov, A. I.; Reiter, G. F.; Choudhury, N.; Prisk, T. R.; Mamontov, E.; Podlesnyak, A.; Ehlers, G.; Seel, A. G.; Wesolowski, D. J.; Anovitz, L. M. Quantum tunneling of water in beryl: A new state of the water molecule. Phys. Rev. Lett. 2016, 116, 167802.

26

Arndt, M.; Nairz, O.; Vos-Andreae, J.; Keller, C.; van der Zouw, G.; Zeilinger, A. Wave-particle duality of C60 molecules. Nature 1999, 401, 680–682.

27

Panitchayangkoon, G.; Hayes, D.; Fransted, K. A.; Caram, J. R.; Harel, E.; Wen, J. Z.; Blankenship, R. E.; Engel, G. S. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. USA 2010, 107, 12766–12770.

28

Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T. K.; Mančal, T.; Cheng, Y. C.; Blankenship, R. E.; Fleming, G. R. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 2007, 446, 782–786.

29

Harush, E. Z.; Dubi, Y. Do photosynthetic complexes use quantum coherence to increase their efficiency? Probably not. Sci. Adv. 2021, 7, eabc4631.

30

Ganim, Z.; Tokmakoff, A.; Vaziri, A. Vibrational excitons in ionophores: Experimental probes for quantum coherence-assisted ion transport and selectivity in ion channels. New J. Phys. 2011, 13, 113030.

31

Vaziri, A.; Plenio, M. B. Quantum coherence in ion channels: Resonances, transport and verification. New J. Phys. 2010, 12, 085001.

32

Summhammer, J.; Sulyok, G.; Bernroider, G. Quantum mechanical coherence of K+ ion wave packets increases conduction in the KcsA ion channel. Appl. Sci. 2020, 10, 4250.

33

Summhammer, J.; Salari, V.; Bernroider, G. A quantum-mechanical description of ion motion within the confining potentials of voltage-gated ion channels. J. Integr. Neurosci. 2012, 11, 123–135.

34

Salari, V.; Moradi, N.; Sajadi, M.; Fazileh, F.; Shahbazi, F. Quantum decoherence time scales for ionic superposition states in ion channels. Phys. Rev. E 2015, 91, 032704.

35

Neese, F. Software update: The ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327.

36

Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78.

37

Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97, 119–124.

38

Zhou, Y. F.; Morais-Cabral, J. H.; Kaufman, A.; MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 2001, 414, 43–48.

39

Wang, K. C.; Yang, L. X.; Wang, S. M.; Guo, L. H.; Ma, J. L.; Tang, J. C.; Bo, W. F.; Wu, Z.; Zeng, B. Q.; Gong, Y. B. Transient proton transfer of base pair hydrogen bonds induced by intense terahertz radiation. Phys. Chem. Chem. Phys. 2020, 22, 9316–9321.

40

Tuckerman, M.; Berne, B. J.; Martyna, G. J. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 1992, 97, 1990–2001.

41

Vassell, M. O.; Lee, J.; Lockwood, H. F. Multibarrier tunneling in Ga1-xAlxAs/GaAs heterostructures. J. Appl. Phys. 1983, 54, 5206–5213.

42
Jackson, J. D. Classical Electrodynamics; Wiley: New York, 1999.
43

Biggin, P. C.; Smith, G. R.; Shrivastava, I.; Choe, S.; Sansom, M. S. P. Potassium and sodium ions in a potassium channel studied by molecular dynamics simulations. Biochim. Biophys. Acta (BBA)-Biomembr. 2001, 1510, 1–9.

44

Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

45

Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

46

Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122.

47

Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003, 75, 281–324.

48
Knapp, M. J.; Meyer, M.; Klinman, J. P. Nuclear tunneling in the condensed phase: Hydrogen transfer in enzyme reactions. In Hydrogen-Transfer Reactions. Hynes, J. T.; Klinman, J. P.; Limbach, H. H.; Schowen, R. L., Eds.; John Wiley & Sons, Ltd: Weinheim, 2007.
49

Diedrich, F.; Bergquist, J. C.; Itano, W. M.; Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 1989, 62, 403–406.

50

Cirac, J. I.; Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 1995, 74, 4091–4094.

51

Xiang, Z. X.; Tang, C. X.; Chang, C.; Liu, G. Z. A primary model of THz and far-infrared signal generation and conduction in neuron systems based on the hypothesis of the ordered phase of water molecules on the neuron surface I: Signal characteristics. Sci. Bull. 2020, 65, 308–317.

52

Liu, G. Z.; Chang, C.; Qiao, Z.; Wu, K. J.; Zhu, Z.; Cui, G. Q.; Peng, W. Y.; Tang, Y. Z.; Li, J.; Fan, C. H. Myelin sheath as a dielectric waveguide for signal propagation in the mid-infrared to terahertz spectral range. Adv. Funct. Mater. 2019, 29, 1807862.

53

Liu, G. Z. The conjectures on physical mechanism of vertebrate nervous system. Chin. Sci. Bull. 2018, 63, 3864–3865.

54

Li, Y. M.; Chang, C.; Zhu, Z.; Sun, L.; Fan, C. H. Terahertz wave enhances permeability of the voltage-gated calcium channel. J. Am. Chem. Soc. 2021, 143, 4311–4318.

55

Wu, K. J.; Qi, C. H.; Zhu, Z.; Wang, C. L.; Song, B.; Chang, C. Terahertz wave accelerates DNA unwinding: A molecular dynamics simulation study. J. Phys. Chem. Lett. 2020, 11, 7002–7008.

56
Ficek, Z.; Wahiddin, M. R. Quantum Optics for Beginners; CRC Press: Boca Raton, 2014.
57

Kampfrath, T.; Tanaka, K.; Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photonics 2013, 7, 680–690.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 August 2021
Revised: 18 October 2021
Accepted: 27 October 2021
Published: 17 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We are thankful to Jingchao Tang, Lianghao Guo, and Jialu Ma in the research group for critical comments. We also thank Haibo Jiang for the discussion about ion channels.

This work was supported by the National Natural Science Foundation of China (Nos. 61921002 and 61988102).

Return