Journal Home > Volume 15 , Issue 4

Being a typical state of the art heterogeneous catalyst, supported noble metal catalyst often demonstrates enhanced catalytic properties. However, a facile synthetic method for realizing large-scale and low-cost supported noble metal catalyst is strictly indispensable. To this end, by making use of the strong metal–support interaction (SMSI) and mechanochemical reaction, we introduce an efficient synthetic route to obtain ultrafine Pt and Ir nanoclusters immobilized on diverse substrates by wet chemical milling. We further demonstrate the scaling-up effect of our approach by large-scale ball-milling production of Pt nanoclusters immobilized on TiO2 substrate. The synthesized Pt/Ir@Co3O4 catalysts exhibit superior oxygen evolution reaction (OER) performance with only 230 and 290 mV overpotential to achieve current density of 10 and 100 mA·cm−2, beating the catalytic performance of Co3O4 supported Pt or Ir clusters and commercial Ir/C. It is envisioned that the present work strategically directs facile ways for fabricating supported noble metal heterogeneous catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Wet-milling synthesis of immobilized Pt/Ir nanoclusters as promising heterogeneous catalysts

Show Author's information Peng Du1,2Kai Huang1( )Xiaoyuan Fan1Jingteng Ma1Naveed Hussain3Ruyue Wang1Bohan Deng2Binghui Ge4Haolin Tang5Ru Zhang1Ming Lei1( )Hui Wu2( )
State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Abstract

Being a typical state of the art heterogeneous catalyst, supported noble metal catalyst often demonstrates enhanced catalytic properties. However, a facile synthetic method for realizing large-scale and low-cost supported noble metal catalyst is strictly indispensable. To this end, by making use of the strong metal–support interaction (SMSI) and mechanochemical reaction, we introduce an efficient synthetic route to obtain ultrafine Pt and Ir nanoclusters immobilized on diverse substrates by wet chemical milling. We further demonstrate the scaling-up effect of our approach by large-scale ball-milling production of Pt nanoclusters immobilized on TiO2 substrate. The synthesized Pt/Ir@Co3O4 catalysts exhibit superior oxygen evolution reaction (OER) performance with only 230 and 290 mV overpotential to achieve current density of 10 and 100 mA·cm−2, beating the catalytic performance of Co3O4 supported Pt or Ir clusters and commercial Ir/C. It is envisioned that the present work strategically directs facile ways for fabricating supported noble metal heterogeneous catalysts.

Keywords: metal clusters, heterogeneous catalysts, wet milling, large-scale production, strong metal–support interaction

References(59)

1

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

2

Yasukawa, T.; Masuda, R.; Kobayashi, S. Development of heterogeneous catalyst systems for the continuous synthesis of chiral amines via asymmetric hydrogenation. Nat. Catal. 2019, 2, 1088–1092.

3

Wang, J.; Gan, L. Y., Zhang, W. Y.; Peng, Y. C.; Yu, H.; Yan, Q. Y.; Xia, X. H.; Wang, X. In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Sci. Adv. 2018, 4, eaap7970.

4

Meirer, F.; Weckhuysen, B. M. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat. Rev. Mater. 2018, 3, 324–340.

5

Ye, R.; Zhao, J.; Wickemeyer, B. B.; Toste, F. D., Somorjai, G. A. Foundations and strategies of the construction of hybrid catalysts for optimized performances. Nat. Catal. 2018, 1, 318–325.

6

Gan, T.; Chu, X. F.; Qi, H.; Zhang, W. X.; Zou, Y. C.; Yan, W. F.; Liu, G. Pt/Al2O3 with ultralow Pt-loading catalyze toluene oxidation: Promotional synergistic effect of Pt nanoparticles and Al2O3 support. Appl. Catal. B: Environ. 2019, 257, 117943.

7

Huang, K.; Zhang, L.; Xu, T.; Wei, H. H.; Zhang, R. Y.; Zhang, X. Y.; Ge, B. H.; Lei, M.; Ma, J. Y.; Liu, L. M. et al. −60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superior performance. Nat. Commun. 2019, 10, 606.

8

Wang, Z.; Xing, R. B.; Yu, X. H.; Han, Y. C. Adhesive lithography for fabricating organic electronic and optoelectronics devices. Nanoscale 2011, 3, 2663–2678.

9

Hutter, E.; Fendler, J. H. Exploitation of localized surface Plasmon resonance. Adv. Mater. 2004, 16, 1685–1706.

10

Loynachan, C. N.; Soleimany, A. P.; Dudani J. S.; Lin, Y. Y.; Najer, A.; Bekdemir, A.; Chen, Q.; Bhatia, S. N.; Stevens, M. M. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 2019, 14, 883–890.

11

Kang, X. C.; Liu, H. Z.; Hou, M. Q.; Sun, X. F.; Han, H. L.; Jiang, T.; Zhang, Z. F.; Han, B. X. Synthesis of supported ultrafine non-noble subnanometer-scale metal particles derived from metal-organic frameworks as highly efficient heterogeneous catalysts. Angew. Chem., Int. Ed. 2016, 55, 1080–1084.

12

Liu, B.; Yao, H. Q.; Song, W. Q.; Jin, L.; Mosa, I. M.; Rusling, J. F.; Suib, S. L.; He, J. Ligand-free noble metal nanocluster catalysts on carbon supports via psoftq nitriding. J. Am. Chem. Soc. 2016, 138, 4718–4721.

13

Wang, H. W.; Gu, X. K.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Chen, S.; Cao, L. N.; Li, W. X.; Lu, J. L. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.

14

Takahashi, M.; Koizumi, H.; Chun, W. J.; Kori, M.; Imaoka, T.; Yamamoto, K. Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons. Sci. Adv. 2017, 3, e1700101.

15

Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.

16

Tang, H. L.; Su, Y.; Zhang, B. S.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y. G.; Huang, J. H.; Haruta, M. et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231.

17

Feng, J. R.; Lv, F.; Zhang, W. Y.; Li, P. H.; Wang, K.; Yang, C.; Wang, B.; Yang, Y.; Zhou, J. H.; Lin, F. et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.

18

Calle-Vallejo, F.; Tymoczko, J.; Colic, V.; Vu, Q. H.; Pohl, M. D.; Morgenstern, K.; Loffreda, D.; Sautet, P.; Schuhmann, W.; Bandarenka, A. S. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 2015, 350, 185–189.

19

van Deelen, T. W.; Mejía, C. H.; de Jong, K. P. Control of metal–support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

20

Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

21

Ahmadi, M.; Mistry, H.; Cuenya, B. R. Tailoring the catalytic properties of metal nanoparticles via support interactions. J. Phys. Chem. Lett. 2016, 7, 3519–3533.

22

Fujiwara, K.; Okuyama, K.; Pratsinis, S. E. Metal-support interactions in catalysts for environmental remediation. Environ. Sci.: Nano 2017, 4, 2076–2092.

23

Huang, T. F.; Sheng, G.; Manchanda, P.; Emwas, A. H.; Lai, Z. P.; Nunes, S. P.; Peinemann, K. V. Cyclodextrin polymer networks decorated with subnanometer metal nanoparticles for high-performance low-temperature catalysis. Sci. Adv. 2019, 5, eaax6976.

24

Wang, Q.; Ming, M.; Niu, S.; Zhang, Y.; Fan, G. Y.; Hu, J. S. Scalable solid-state synthesis of highly dispersed uncapped metal (Rh, Ru, Ir) nanoparticles for efficient hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801698.

25

Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

26

Su, J. W.; Yang, Y.; Xia, G. L.; Chen, J. T.; Jiang, P.; Chen, Q. W. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969.

27

Sun, J. K.; Zhan, W. W.; Akita, T.; Xu, Q. Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: Soluble porous organic cage as a stabilizer and homogenizer. J. Am. Chem. Soc. 2015, 137, 7063–7066.

28

Peng, P.; Shi, L.; Huo, F.; Mi, C. X.; Wu, X. H.; Zhang, S. J.; Xiang, Z. H. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 2019, 5, eaaw2322.

29

bin Saiman, M. I.; Brett, G. L.; Tiruvalam, R.; Forde, M. M.; Sharples, K.; Thetford, A.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Murphy, D. M. et al. Involvement of surface-bound radicals in the oxidation of toluene using supported Au-Pd nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 5981–5985.

30

Zhou, P.; Jiang, L.; Wang, F.; Deng, K. J.; Lv, K. L.; Zhang, Z. H. High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives. Sci. Adv. 2017, 3, e1601945.

31

Wu, Z. Y.; Xu, S. L.; Yan, Q. Q.; Chen, Z. Q.; Ding, Y. W.; Li, C.; Liang, H. W.; Yu, S. H. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 2017, 4, eaat0788.

32

Friščić, T. Supramolecular concepts and new techniques in mechanochemistry: Cocrystals, cages, rotaxanes, open metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 3493–3510.

33

Amrute, A. P.; Łodziana, Z.; Schreyer, H.; Weidenthaler, C.; Schüth, F. High-surface-area corundum by mechanochemically induced phase transformation of boehmite. Science 2019, 366, 485–489.

34

Pham, H. H.; Cheng, M. J.; Frei, H.; Wang, L. W. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4(001) surface. ACS Catal. 2016, 6, 5610–5617.

35

Zhuang, Z. B.; Sheng, W. C.; Yan, Y. S. Synthesis of Monodispere Au@Co3O4 core–shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv. Mater. 2014, 26, 3950–3955.

36

Li, H. C.; Zhang, Y. J.; Hu, X.; Liu, W. J.; Chen, J. J.; Yu, H. Q. Metal-organic framework templated Pd@PdO-Co3O4 nanocubes as an efficient bifunctional oxygen electrocatalyst. Adv. Energy Mater. 2018, 8, 1702734.

37

Vogt, C. G.; Grtz, S.; Lukin, S.; Halasz, I.; Etter, M.; Evans, J. D.; Borchardt, L. Direct mechanocatalysis: Palladium as milling media and catalyst in the mechanochemical Suzuki polymerization. Angew. Chem., Int. Ed. 2019, 58, 18942–18947.

38

Yang, C. Z.; Rousse, G.; Svane, K. L.; Pearce, P. E.; Abakumov, A. M.; Deschamps, M.; Cibin, G.; Chadwick, A. V.; Corte, D. A. D.; Hansen, H. A. et al. Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst. Nat. Commun. 2020, 11, 1378.

39

Kubota, K.; Pang, Y.; Miura, A.; Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 2019, 366, 1500–1504.

40

Kamolphop, U.; Taylor, S. F. R.; Breen, J. P.; Burch, R.; Delgado, J. J.; Chansai, S.; Hardacre, C.; Hengrasmee, S.; James, S. L. Low-temperature selective catalytic reduction (SCR) of NOx with n-octane using solvent-free mechanochemically prepared Ag/Al2O3 catalysts. ACS Catal. 2011, 1, 1257–1262.

41

Sun, D.; Ye, D. L.; Liu, P.; Tang, Y. G.; Guo, J.; Wang, L. Z.; Wang, H. Y. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702383.

42

Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.

43

Yue, W. B.; Randorn, C.; Attidekou, P. S.; Su, Z. X.; Irvine, J. T. S.; Zhou, W. Z. Syntheses, Li insertion, and photoactivity of mesoporous crystalline TiO2. Adv. Funct. Mater. 2009, 19, 2826–2833.

44

Narendra Kumar, A. V.; Li, Y. H.; Yin, S. L.; Li, C. J.; Xue, H. R.; Xu, Y.; Li, X. N.; Wang, H. J.; Wang, L. Mesoporous Co3O4 nanobundle electrocatalysts. Chem. -Asian J. 2018, 13, 2093–2100.

45

Lang, R.; Xi, W.; Liu, J. C.; Cui, Y. T.; Li, T. B.; Lee, A. F.; Chen, F.; Chen, Y.; Li, L.; Li, L. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.

46

Jones, J.; Xiong H. F.; DeLaRiva, A. T.; Peterson E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

47

Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

48

Dong, Y.; Lin, X. J.; Wang, D. K.; Yuan, R. L.; Zhang, S.; Chen, X. H.; Bulusheva, L. G.; Okotrub, A. V.; Song, H. H. Modulating the defects of graphene blocks by ball-milling for ultrahigh gravimetric and volumetric performance and fast sodium storage. Energy Storage Mater. 2020, 30, 287–295.

49

Shi, D.; Yang, M. Z.; Chang, B.; Ai, Z. Z.; Zhang, K.; Shao, Y. L.; Wang, S. Z.; Wu, Y. Z.; Hao, X. P. Ultrasonic-ball milling: A novel strategy to prepare large-size ultrathin 2D materials. Small 2020, 16, 1906734.

50

Robertson, J. C.; Coote, M. L.; Bissember, A. C. Synthetic applications of light, electricity, mechanical force and flow. Nat. Rev. Chem. 2019, 3, 290–304.

51

Zhu, Y. P.; Ma, T. Y.; Jaroniec, M.; Qiao, S. Z. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem., Int. Ed. 2017, 56, 1324–1328.

52

Xu, H.; Wei, J. J.; Zhang, M.; Liu, C. F.; Shiraishi, Y.; Wang, C. Q.; Du, Y. K. Heterogeneous Co(OH)2 nanoplates/Co3O4 nanocubes enriched with oxygen vacancies enable efficient oxygen evolution reaction electrocatalysis. Nanoscale 2018, 10, 18468–18472.

53

Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694.

54

Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.

55

Ou, G.; Xu, Y. S.; Wen, B.; Lin, R.; Ge, B. H.; Tang, Y.; Liang, Y. W.; Yang, C.; Huang, K.; Zu, D. et al. Tuning defects in oxides at room temperature by lithium reduction. Nat. Commun. 2018, 9, 1302.

56

Liu, Y.; Ma, C.; Zhang, Q. H.; Wang, W.; Pan, P. F.; Gu, L.; Xu, D. D.; Bao, J. C.; Dai, Z. H. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 1900062.

57

Cheng, X.; Li, Y.; Zheng, L. R.; Yan, Y.; Zhang, Y. F.; Chen, G.; Sun, S. R.; Zhang, J. J. Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 2450–2458.

58

Sun, Y.; Zhou, Y. J.; Zhu, C.; Hu, L. L.; Han, M. M.; Wang, A. Q.; Huang, H.; Liu, Y.; Kang, Z. H. A Pt-Co3O4-CD electrocatalyst with enhanced electrocatalytic performance and resistance to CO poisoning achieved by carbon dots and Co3O4 for direct methanol fuel cells. Nanoscale 2017, 9, 5467–5474.

59

Wang, W. Q.; Xi, S. M.; Shao, Y. L.; Gao, X.; Lin, J.; Meng, C.; Wang, W. J.; Guo, X. S.; Li, G. C. Sub-nanometer-sized iridium species decorated on mesoporous Co3O4 for electrocatalytic oxygen evolution. ChemElectroChem 2019, 6, 1846–1852.

File
12274_2021_3963_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 August 2021
Revised: 26 October 2021
Accepted: 27 October 2021
Published: 12 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This study was supported by the National Natural Science Foundations of China (Nos. 51902027, 61874014, 61874013, 51788104, 61974011 and 61976025), the Basic Science Center Program of the National Natural Science Foundation of China (No. 51788104), National Basic Research of China (Nos. 2016YFE0102200 and 2018YFB0104404), Beijing Natural Science Foundation (No. JQ19005), Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, China).

Return