Journal Home > Volume 15 , Issue 11

Attention toward aqueous zinc-ion battery has soared recently due to its operation safety and environmental benignity. Nonetheless, dendrite formation and side reactions occurred at the anode side greatly hinder its practical application. Herein, we adopt direct plasma-enhanced chemical vapor deposition strategy to in situ grow N-doped carbon (NC) over commercial glass fiber separator targeting a highly stabilized Zn anode. The strong zincophilicity of such a new separator would reduce the nucleation overpotential of Zn and enhance the Zn-ion transference number, thereby alleviating side reactions. Symmetric cells equipped with NC-modified separator harvest a stable cycling for more than 1,100 h under 1 mA·cm−2/1 mAh·cm−2. With the assistance of NC, the depth of discharge of Zn anode reaches as high as 42.7%. When assembled into full cells, the zinc-ion battery based on NC-modified separator could maintain 79% of its initial capacity (251 mAh·g−1) at 5 A·g−1 after 1,000 cycles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes

Show Author's information Xianzhong Yang1Weiping Li1Jiaze Lv1Guojie Sun1Zixiong Shi1Yiwen Su1Xueyu Lian1,2Yanyan Shao1Aomiao Zhi3Xuezeng Tian3Xuedong Bai3Zhongfan Liu1,2,4( )Jingyu Sun1,2( )
College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
Beijing Graphene Institute (BGI), Beijing 100095, China
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Abstract

Attention toward aqueous zinc-ion battery has soared recently due to its operation safety and environmental benignity. Nonetheless, dendrite formation and side reactions occurred at the anode side greatly hinder its practical application. Herein, we adopt direct plasma-enhanced chemical vapor deposition strategy to in situ grow N-doped carbon (NC) over commercial glass fiber separator targeting a highly stabilized Zn anode. The strong zincophilicity of such a new separator would reduce the nucleation overpotential of Zn and enhance the Zn-ion transference number, thereby alleviating side reactions. Symmetric cells equipped with NC-modified separator harvest a stable cycling for more than 1,100 h under 1 mA·cm−2/1 mAh·cm−2. With the assistance of NC, the depth of discharge of Zn anode reaches as high as 42.7%. When assembled into full cells, the zinc-ion battery based on NC-modified separator could maintain 79% of its initial capacity (251 mAh·g−1) at 5 A·g−1 after 1,000 cycles.

Keywords: N-doped carbon, plasma-enhanced chemical vapor deposition (PECVD), glass fiber, separator modification, Zn metal anode

References(39)

[1]

Luo, H. Y.; Chen, M. X.; Cao, J. H.; Zhang, M.; Tan, S.; Wang, L.; Zhong, J.; Deng, H. L.; Zhu, J.; Lu, B. G. Cocoon silk-derived, hierarchically porous carbon as anode for highly robust potassium-ion hybrid capacitors. Nano-Micro Lett. 2020, 12, 113.

[2]

Wang, T.; Zhang, Q. S.; Zhong, J.; Chen, M. X.; Deng, H. L.; Cao, J. H.; Wang, L.; Peng, L. L.; Zhu, J.; Lu, B. G. 3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries. Adv. Energy Mater. 2021, 11, 2100448.

[3]

Wang, T.; Yang, H. G.; Lu, B. G. Ultra-stable sodium ion battery cathode realized by Cu7S4 nanoparticles. J. Power Sources 2018, 399, 105–114.

[4]
Wang, L.; Wang, T.; Peng, L. L.; Wang, Y. L.; Zhang, M.; Zhou, J.; Chen, M. X.; Cao, J. H.; Fei, H. L.; Duan, X. D. et al. The promises, challenges and pathways to room-temperature sodium-sulfur batteries. Natl. Sci. Rev., in press, DOI: 10.1093/nsr/nwab050.
[5]

Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

[6]

Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 13180–13191.

[7]

Zheng, X. H.; Ahmad, T.; Chen, W. Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Mater. 2021, 39, 365–394.

[8]

Chao, D. L.; Qiao, S. Z. Toward high-voltage aqueous batteries: Super- or low-concentrated electrolyte? Joule 2020, 4, 1846–1851.

[9]

Zhang, T. S.; Tang, Y.; Guo, S.; Cao, X. X.; Pan, A. Q.; Fang, G. Z.; Zhou, J.; Liang, S. Q. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review. Energy Environ. Sci. 2020, 13, 4625–4665.

[10]

Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

[11]

Hao, J. N.; Li, X. L.; Zeng, X. H.; Li, D.; Mao, J. F.; Guo, Z. P. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 2020, 13, 3917–3949.

[12]

Zhang, N.; Chen, X. Y.; Yu, M.; Niu, Z. Q.; Cheng, F. Y.; Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203–4219.

[13]

Yang, Q.; Li, Q.; Liu, Z. X.; Wang, D. H.; Guo, Y.; Li, X. L.; Tang, Y. C.; Li, H. F.; Dong, B. B.; Zhi, C. Y. Dendrites in Zn-based batteries. Adv. Mater. 2020, 32, 2001854.

[14]

Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

[15]

Yi, Z. H.; Chen, G. Y.; Hou, F.; Wang, L. Q.; Liang, J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 2021, 11, 2003065.

[16]

Guo, X. X.; Zhang, Z. Y.; Li, J. W.; Luo, N. J.; Chai, G. L.; Miller, T. S.; Lai, F. L.; Shearing, P.; Brett, D. J. L.; Han, D. L. et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 2021, 6, 395–403.

[17]

Cao, L. S.; Li, D.; Hu, E. Y.; Xu, J. J.; Deng, T.; Ma, L.; Wang, Y.; Yang, X. Q.; Wang, C. S. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404–21409.

[18]

Wang, F.; Borodin, O.; Gao, T.; Fan, X. L.; Sun, W.; Han, F. D.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C. S. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549.

[19]

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

[20]

Zhang, Q.; Luan, J. Y.; Fu, L.; Wu, S. A.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem., Int. Ed. 2019, 58, 15841–15847.

[21]

Zhang, N. N.; Huang, S.; Yuan, Z. S.; Zhu, J. C.; Zhao, Z. F.; Niu, Z. Q. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 2861–2865.

[22]

Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645–648.

[23]

Zhang, X. T.; Li, J. X.; Liu, D. Y.; Liu, M. K.; Zhou, T. S.; Qi, K. W.; Shi, L.; Zhu, Y. C.; Qian, Y. T. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 2021, 14, 3120–3129.

[24]

Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W. H.; Wu, D. L.; Zuo, S. W.; Zhang, J.; Chen, B.; Dai, Z. W. et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2008033.

[25]

Li, C.; Sun, Z. T.; Yang, T.; Yu, L. H.; Wei, N.; Tian, Z. N.; Cai, J. S.; Lv, J. Z.; Shao, Y. L.; Rümmeli, M. H. et al. Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 2020, 32, 2003425.

[26]

Zhou, J. H.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y. T.; Huang, R. L.; Wei, G. L.; Liu, A. N.; Li, L.; Chen, R. J. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2101649.

[27]

Cao, P. H.; Zhou, X. Y.; Wei, A. R.; Meng, Q.; Ye, H.; Liu, W. P.; Tang, J. J.; Yang, J. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2100398.

[28]

Cao, J.; Zhang, D. D.; Zhang, X. Y.; Sawangphruk, M.; Qin, J. Q.; Liu, R. P. A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J. Mater. Chem. A 2020, 8, 9331–9344.

[29]

Cao, J.; Zhang, D. D.; Gu, C.; Wang, X.; Wang, S. M.; Zhang, X. Y.; Qin, J. Q.; Wu, Z. S. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 2021, 11, 2101299.

[30]

Tian, M.; Liu, C. F.; Zheng, J. Q.; Jia, X. X.; Jahrman, E. P.; Seidler, G. T.; Long, D. H.; Atif, M.; Alsalhi, M.; Cao, G. Z. Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Mater. 2020, 29, 9–16.

[31]

Han, J.; Euchner, H.; Kuenzel, M.; Hosseini, S. M.; Groß, A.; Varzi, A.; Passerini, S. A thin and uniform fluoride-based artificial interphase for the zinc metal anode enabling reversible Zn/MnO2 batteries. ACS Energy Lett. 2021, 6, 3063–3071.

[32]

Yang, X. Z.; Lu, S. N.; Peng, J.; Hu, X. C.; Wu, N.; Wu, C. C.; Zhang, C.; Huang, Y. F.; Yu, Y.; Wang, H. T. Ambipolar two-dimensional bismuth nanostructures in junction with bismuth oxychloride. Nano Res. 2021, 14, 1103–1109.

[33]

Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rümmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846–5854.

[34]

Park, S. H.; Byeon, S. Y.; Park, J. H.; Kim, C. Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes. ACS Energy Lett. 2021, 6, 3078–3085.

[35]

Zhao, Y.; Sun, Z. T.; Yi, Y. Y.; Lu, C.; Wang, M. L.; Xia, Z.; Lian, X. Y.; Liu, Z. F.; Sun, J. Y. Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Res. 2021, 14, 1413–1420.

[36]

Wei, N.; Yu, L. H.; Sun, Z. T.; Song, Y. Z.; Wang, M. L.; Tian, Z. N.; Xia, Y.; Cai, J. S.; Li, Y. Y.; Zhao, L. et al. Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 2019, 13, 7517–7526.

[37]

Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324–2328.

[38]

Qiu, H. Y.; Du, X. F.; Zhao, J. W.; Wang, Y. T.; Ju, J. W.; Chen, Z.; Hu, Z. L.; Yan, D. P.; Zhou, X. H.; Cui, G. L. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 2019, 10, 5374.

[39]

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

File
12274_2021_3957_MOESM1_ESM.pdf (1,003.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 July 2021
Revised: 25 September 2021
Accepted: 25 October 2021
Published: 23 November 2021
Issue date: November 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2019YFA0708201) and Suzhou Science and Technology Project-Prospective Application Research Program (No. SYG202038). The authors acknowledge support from the Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Suzhou, China.

Return