Journal Home > Volume 15 , Issue 4

ABO3 perovskites, owning unique properties, have great research prospect in electromagnetic wave absorption field. Normally, doping can significantly regulate the dielectric loss, whereas the magnetic loss can be ignored. In this work, the crystal structure and electromagnetic properties can be regulated systematically by the K, Fe co-doping for LaCoO3 perovskites (LKCFO) under the condition of fixed F content. In addition, the obtained samples show the obvious interfacial polarization effect on accounting to the small size effect, which is conducive to the effective microwave absorption. By analyzing the evolution of the positron annihilation lifetime and the first-principles calculation of the oxygen density of states for the series of LKCFO perovskites, it is found that the charge transport characteristics will be controlled by the point defect generated by allelic doping. The point defect content decreases and then increases as the doping level rises. The prepared perovskite exhibits the lowest defect density and the largest dielectric loss capability, which indicates that the lower point defects promote electron migration and thus enhance the dielectric loss; thus, the electromagnetic wave absorption bandwidth up to 6.2 GHz is reached. In contrast, both insufficient and excessive K doping are detrimental to the enhancement of microwave absorption. Especially, the practical application value was investigated using Computer Simulation Technology (CST) simulations. The LKCFO-2 exhibits the smallest RCS value (below −10 dBm2) at almost −90°– 90° with a thickness of 2 mm, providing an effective method for study excellent microwave absorption and scattering property.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability

Show Author's information Fan Wang1Weihua Gu1Jiabin Chen1Yue Wu1Ming Zhou1Shaolong Tang2Xingzhong Cao3Peng Zhang3Guangbin Ji1( )
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract

ABO3 perovskites, owning unique properties, have great research prospect in electromagnetic wave absorption field. Normally, doping can significantly regulate the dielectric loss, whereas the magnetic loss can be ignored. In this work, the crystal structure and electromagnetic properties can be regulated systematically by the K, Fe co-doping for LaCoO3 perovskites (LKCFO) under the condition of fixed F content. In addition, the obtained samples show the obvious interfacial polarization effect on accounting to the small size effect, which is conducive to the effective microwave absorption. By analyzing the evolution of the positron annihilation lifetime and the first-principles calculation of the oxygen density of states for the series of LKCFO perovskites, it is found that the charge transport characteristics will be controlled by the point defect generated by allelic doping. The point defect content decreases and then increases as the doping level rises. The prepared perovskite exhibits the lowest defect density and the largest dielectric loss capability, which indicates that the lower point defects promote electron migration and thus enhance the dielectric loss; thus, the electromagnetic wave absorption bandwidth up to 6.2 GHz is reached. In contrast, both insufficient and excessive K doping are detrimental to the enhancement of microwave absorption. Especially, the practical application value was investigated using Computer Simulation Technology (CST) simulations. The LKCFO-2 exhibits the smallest RCS value (below −10 dBm2) at almost −90°– 90° with a thickness of 2 mm, providing an effective method for study excellent microwave absorption and scattering property.

Keywords: microwave absorption, perovskites, doping, point defect, effective bandwidth

References(53)

1

Bora, P. J.; Azeem, I.; Vinoy, K. J.; Ramamurthy, P. C.; Madras, G. Polyvinylbutyral-polyaniline nanocomposite for high microwave absorption efficiency. ACS Omega 2018, 3, 16542–16548.

2

Tao, F. J.; Green, M.; Tran, A. T. V.; Zhang, Y. L.; Yin, Y. S.; Chen, X. B. Plasmonic Cu9S5 nanonets for microwave absorption. ACS Appl. Nano Mater. 2019, 2, 3836–3847.

3

Chen, J. B.; Zheng, J.; Wang, F. Huang, Q. Q.; Ji, G. B. Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon 2021, 174, 509–517.

4

Liu, W.; Tan, S. J.; Yang, Z. H.; Ji, G. B. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018, 10, 31610–31622.

5

Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2021, 14, 1609–1624.

6

Quan, B.; Shi, W. H.; Ong, S. J. H.; Lu, X. C.; Wang, P. L.; Ji, G. B.; Guo, Y. F.; Zheng, L. R.; Xu, Z. J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 2019, 29, 1901236.

7

Wang, L.; Li, X.; Li, Q. Q.; Zhao, Y. H.; Che, R. C. Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: As a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces 2018, 10, 22602–22610.

8

Xiao, Y.; Huang, H. X.; Liang, D. M.; Wang, C. Electrocatalytic properties and modification of La0.6Ca0.4Co1−xMnxO3 (x = 0–0.9) perovskite-type oxides. Chem. Phys. Lett. 2020, 738, 136846.

9

Liu, X.; Wang, L. S.; Ma, Y. T.; Zheng, H. F.; Lin, L.; Zhang, Q. F.; Chen, Y. Z.; Qiu, Y. L.; Peng, D. L. Enhanced microwave absorption properties by tuning cation deficiency of perovskite oxides of two-dimensional LaFeO3/C composite in X-band. ACS Appl. Mater. Interfaces 2017, 9, 7601–7610.

10

Wu, D.; Chen, G. D.; Ge, C. Y.; Hu, Z. P.; He, X. H.; Li, X. G. DFT + U analysis on stability of low-index facets in hexagonal LaCoO3 perovskite: Effect of Co3+ spin states. Chin. J. Chem. Phys. 2017, 30, 295–302.

11

Wang, X.; Han, Y.; Song, X. J.; Liu, W. H.; Cui, H. Z. Phonon spectrum and thermodynamic properties of LaCoO3 based on first-principles theory. Comput. Mater. Sci. 2017, 136, 191–197.

12

Hueso, J. L.; Caballero, A.; Ocaña, M.; González-Elipe, A. R. Reactivity of lanthanum substituted cobaltites toward carbon particles. Chin. J. Catal. 2008, 257, 334–344.

13

Hueso, J. L.; Martínez-Martínez, D.; Caballero, A.; González-Elipe, A. R.; Mun, B. S.; Salmerón, M. Near-ambient X-ray photoemission spectroscopy and kinetic approach to the mechanism of carbon monoxide oxidation over lanthanum substituted cobaltites. Catal. Commun. 2009, 10, 1898–1902.

14

Hueso, J. L.; Holgado, J. P.; Pereñíguez, R.; Mun, S.; Salmeron, M.; Caballero, A. Chemical and electronic characterization of cobalt in a lanthanum perovskite. Effects of strontium substitution. J. Solid State Chem. 2010, 183, 27–32.

15

Hueso, J. L.; Holgado, J. P.; Pereñíguez, R.; Gonzalez-DelaCruz, V. M.; Caballero, A. Structural and chemical reactivity modifications of a cobalt perovskite induced by Sr-substitution. An in situ XAS study. Mater. Chem. Phys. 2015, 151, 29–33.

16

Cai, J.; Yao, Q. R.; Rao, G. H. Structure and microwave absorption properties of cobalt based oxide La1−xNaxCoO3. J. Chin. Soc. Rare Earths 2015, 33, 341–348.

17

Lin, Y.; Wang, Q.; Gao, S. Y.; Yang, H. B.; Wang, L. Constructing flower-like porous Bi0.9La0.1FeO3 microspheres for excellent electromagnetic wave absorption performances. J. Alloys Compd. 2018, 745, 761–772.

18

Li, Y.; Yang, H. J.; Yang, W. G.; Hou, Z. L.; Li, J. B.; Jin, H. B.; Yuan, J.; Cao, M. S. Structure, ferromagnetism and microwave absorption properties of La substituted BiFeO3 nanoparticles. Mater. Lett. 2013, 111, 130–133.

19

Yin, C. L.; Tian, G. F.; Li, G. B.; Liao, F. H.; Lin, J. H. New 10H perovskites Ba5Ln1−xMn4+yO15−δ with spin glass behaviour. RSC Adv. 2017, 7, 33869–33874.

20

Nabi, A.; Akhtar, Z.; Iqbal, T.; Ali, A.; Arshad Javid, M. The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: First principles calculations. J. Semicond. 2017, 38, 073001.

21

Azhar, M.; Mostovoy, M. Incommensurate spiral order from double-exchange interactions. Phys. Rev. Lett. 2017, 118, 027203.

22

Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

23

Jia, Z.; Gao, Z. G.; Feng, A.; Zhang, Y.; Zhang, C. H.; Nie, G. Z.; Wang, K. K.; Wu, G. L. Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon. Compos. B. Eng. 2019, 176, 107246.

24

Song, L. L.; Duan, Y. P.; Liu, J.; Pang, H. F. Transformation between nanosheets and nanowires structure in MnO2 upon providing Co2+ ions and applications for microwave absorption. Nano Res. 2020, 13, 95–104.

25

Wang, G. H.; Ong, S. J. H.; Zhao, Y.; Xu, Z. J.; Ji, G. B. Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. J. Mater. Chem. A 2020, 8, 24368–24387.

26

Moitra, D.; Dhole, S.; Ghosh, B. K.; Chandel, M.; Jani, R. K.; Patra, M. K.; Vadera, S. R.; Ghosh, N. N. Synthesis and microwave absorption properties of BiFeO3 nanowire-RGO nanocomposite and first-principles calculations for insight of electromagnetic properties and electronic structures. J. Phys. Chem. C 2017, 121, 21290–21304.

27

Park, J.; Wu, Y. N.; Saidi, W. A.; Chorpening, B.; Duan, Y. H. First-principles exploration of oxygen vacancy impact on electronic and optical properties of ABO3−δ (A = La, Sr; B = Cr, Mn) perovskites. Phys. Chem. Chem. Phys. 2020, 22, 27163–27172.

28

Smith, E.; Škapin, S.; Ubic, R. Correlative models for oxygen vacancies in perovskites. J. Alloys Compd. 2020, 836, 155475.

29

Lee, K. W.; Lee, C. E. Transverse electric field-induced quantum valley Hall effects in zigzag-edge graphene nanoribbons. Phys. Lett. A 2018, 382, 2137–2143.

30

Shornikova, E. V.; Golovatenko, A. A.; Yakovlev, D. R.; Rodina, A. V.; Biadala, L.; Qiang, G.; Kuntzmann, A.; Nasilowski, M.; Dubertret, B.; Polovitsyn, A. et al. Surface spin magnetism controls the polarized exciton emission from CdSe nanoplatelets. Nat. Nanotechnol. 2020, 15, 277–282.

31

Hong, Y.; Li, J.; Bai, H.; Song, Z. J.; Li, G. M.; Wang, M.; Zhou, Z. X. Role of finite-size effect in BiFeO3 nanoparticles to enhance ferromagnetism and microwave absorption. Appl. Phys. Lett. 2020, 116, 013103.

32

Zhang, Z.; Tan, J. W.; Gu, W. W.; Zhao, H. Q.; Zheng, J.; Zhang, B. S.; Ji, G. B. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190.

33

Zhang, M.; Yang, H. J.; Li, Y.; Cao, W. Q.; Fang, X. Y.; Yuan, J.; Cao, M. S. Cobalt doping of bismuth ferrite for matched dielectric and magnetic loss. Appl. Phys. Lett. 2019, 115, 212902.

34

Zhao, H. Q.; Cheng, Y.; Zhang, Z.; Yu, J. W.; Zheng, J.; Zhou, M.; Zhou, L.; Zhang, B. S.; Ji, G. B. Rational design of core–shell Co@C nanotubes towards lightweight and high-efficiency microwave absorption. Compos. B: Eng. 2020, 196, 108119.

35

Ning, X.; Cao, X. Z.; Li, C.; Li, D. M.; Zhang, P.; Gong, Y. H.; Xia, R.; Wang, B. Y.; Wei, L. Modification of source contribution in PALS by simulation using Geant4 code. Nucl. Instrum. Methods Phys. Res. B:Beam Interact. Mater. Atoms. 2017, 397, 75–81.

36

Xia, R.; Cao, X. Z.; Gao, M. Z.; Zhang, P.; Zeng, M. F.; Wang, B. Y.; Wei, L. Probing sub-nano level molecular packing and correlated positron annihilation characteristics of ionic cross-linked chitosan membranes using positron annihilation spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 3616–3626.

37

Cen, Y. L.; Shi, J. J.; Zhang, M.; Wu, M.; Du, J.; Guo, W. H.; Liu, S. M.; Han, S. P.; Zhu, Y. H. Design of lead-free and stable two-dimensional Dion-Jacobson-type chalcogenide perovskite A'La2B3S10 (A' = Ba/Sr/Ca; B = Hf/Zr) with optimal band gap, strong optical absorption, and high efficiency for photovoltaics. Chem. Mater. 2020, 32, 2450–2460.

38

Thuijs, A. E.; Li, X. G.; Wang, Y. P.; Abboud, K. A.; Zhang, X. G.; Cheng, H. P.; Christou, G. Molecular analogue of the perovskite repeating unit and evidence for direct MnIII-CeIV-MnIII exchange coupling pathway. Nat. Commun. 2017, 8, 500.

39

Hardy, V.; Bréard, Y.; Guillou, F. Thermodynamic model of the coupled valence and spin state transition in cobaltates. J. Phys. :Condens. Matter 2021, 33, 095801.

40

Wu, H.; Li, F. Oxygen vacancy-assisted high ionic conductivity in perovskite LaCoO3−δ (δ = 1/3) thin film: A first-principles-based study. Phys. Lett. A 2019, 383, 210–214.

41

Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L. T.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 2017, 10, 1107–1114.

42

Zhao, H. Q.; Cheng, Y.; Zhang, Z.; Zhang, B. S.; Pei, C. C.; Fan, F. Y.; Ji, G. B. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 2021, 173, 501–511.

43

Li, Q.; Zhang, Z.; Qi, L. P.; Liao, Q. L.; Kang, Z.; Zhang, Y. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 2019, 6, 1801057.

44

Gu, W. H.; Tan, J. W.; Chen, J. B.; Zhang, Z.; Zhao, Y.; Yu, J. W.; Ji, G. B. Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 28727–28737.

45

Asefi, N.; Masoudpanah, S. M.; Hasheminiasari, M. Microwave-assisted solution combustion synthesis of BiFeO3 powders. J. Sol-Gel Sci. Technol. 2018, 86, 751–759.

46

Gao, Z. G.; Jia, Z. R.; Zhang, J. Q.; Feng, A. L.; Huang, Z. Y.; Wu, G. L. Tunable microwave absorbing property of LaxFeO3/C by introducing A-site cation deficiency. J. Mater. Sci. :Mater. Electron. 2019, 30, 13474–13487.

47

Pan, J. J.; Xia, W.; Sun, X.; Wang, T.; Li, J. J.; Sheng, L.; He, J. P. Improvement of interfacial polarization and impedance matching for two-dimensional leaf-like bimetallic (Co, Zn) doped porous carbon nanocomposites with broadband microwave absorption. Appl. Surf. Sci. 2020, 512, 144894.

48

Xu, Z. J.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Huo, Y.; Kang, Y. F.; Wang, R.; Xu, R.; Peng, H. et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Res. 2021, 14, 738–746.

49

Cheng, Y.; Zhao, Y.; Zhao, H. Q.; Lv, H. L.; Qi, X. D.; Cao, J. M.; Ji, G. B.; Du, Y. W. Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 2019, 372, 390–398.

50

Li, Q.; Zhang, Z.; Xun, X. C.; Gao, F. F.; Zhao, X.; Kang, Z.; Ding, Y.; Liao, Q. L.; Zhang, Y. Synergistic engineering of dielectric and magnetic losses in M-Co/RGO nanocomposites for use in high-performance microwave absorption. Mater. Chem. Front. 2020, 4, 3013–3021.

51

Ding, Y.; Zhao, X.; Li, Q.; Zhang, Z.; Kang, Z.; Liao, Q. L.; Zhang, Y. Broadband electromagnetic wave absorption properties and mechanism of MoS2/rGO nanocomposites. Mater. Chem. Front. 2021, 5, 5063–5070.

52

Miao, P.; Yang, J.; Liu, Y.; Xie, H.; Chen, K.-J.; Kong, J. Emerging perovskite electromagnetic wave absorbers from bi-metal-organic frameworks. Cryst. Growth Des. 2020, 20, 4818–4826.

53

Ding, Y.; Zhao, L.; Liao, Q. L.; Zhang, G. J.; Liu, S.; Zhang, Y. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 2016, 9, 2018–2025.

File
12274_2021_3955_MOESM1_ESM.pdf (753.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 August 2021
Revised: 01 October 2021
Accepted: 25 October 2021
Published: 26 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We are thankful for the financial support from the National Nature Science Foundation of China (No. 51971111).

Return