Journal Home > Volume 15 , Issue 4

Surface charge transfer doping has been widely utilized to tune the electronic and optical properties of semiconductor photodetectors based on low-dimensional materials. Although many studies have been conducted on the performance (response time, responsivity, etc.) of doped photodetectors and their mechanisms, they merely examined a specific thickness and did not systematically explore the dependence of doping effects on the number of layers. This work performs a series of investigations on ReS2 photodetectors with different numbers of layers and demonstrates that the p-dopant tetrafluorotetracyanoquinodimethane (F4-TCNQ) converts the deep trap states into recombination centers for few-layer ReS2 and induces a vertical p-n junction for thicker ReS2. A response time of 200 ms is observed in the decorated 2-layer ReS2 photodetector, more than two orders of magnitude faster than the response of the pristine photodetector, due to the disappearance of deep trap states. A current rectification ratio of 30 in the F4-TCNQ-decorated sandwiched ReS2 device demonstrates the formation of a vertical p-n junction in a thicker ReS2 device. The responsivity is as high as 2,000 A/W owing to the strong carrier separation of the p-n junction. Different thicknesses of ReS2 enable switching of the prominent operating mechanism between transforming deep trap states into recombination centers and forming a vertical p-n junction. The thickness-dependent doping effect of a two-dimensional material serves as a new mechanism and provides a scheme toward improving the performance of other semiconductor devices, especially optical and electronic devices based on low-dimensional materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thickness-dependent enhanced optoelectronic performance of surface charge transfer-doped ReS2 photodetectors

Show Author's information Peiyu Zeng1Wenhui Wang2Jie Jiang2Zheng Liu3Dongshuang Han4Shuojie Hu1Jiaoyan He1Peng Zheng1Hui Zheng1Liang Zheng1Xiaojing Yao5( )Weitao Su4Dexuan Huo6Zhangting Wu1( )Zhenhua Ni2Yang Zhang1( )
Lab for Nanoelectronics and NanoDevices, Department of Electronics Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
School of Physics, Southeast University, Nanjing 211189, China
Jiangsu Province Special Equipment Safety Supervision and Inspection Institute, Wuxi 214170, China
School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
College of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, China
Institute of Materials Physics, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Surface charge transfer doping has been widely utilized to tune the electronic and optical properties of semiconductor photodetectors based on low-dimensional materials. Although many studies have been conducted on the performance (response time, responsivity, etc.) of doped photodetectors and their mechanisms, they merely examined a specific thickness and did not systematically explore the dependence of doping effects on the number of layers. This work performs a series of investigations on ReS2 photodetectors with different numbers of layers and demonstrates that the p-dopant tetrafluorotetracyanoquinodimethane (F4-TCNQ) converts the deep trap states into recombination centers for few-layer ReS2 and induces a vertical p-n junction for thicker ReS2. A response time of 200 ms is observed in the decorated 2-layer ReS2 photodetector, more than two orders of magnitude faster than the response of the pristine photodetector, due to the disappearance of deep trap states. A current rectification ratio of 30 in the F4-TCNQ-decorated sandwiched ReS2 device demonstrates the formation of a vertical p-n junction in a thicker ReS2 device. The responsivity is as high as 2,000 A/W owing to the strong carrier separation of the p-n junction. Different thicknesses of ReS2 enable switching of the prominent operating mechanism between transforming deep trap states into recombination centers and forming a vertical p-n junction. The thickness-dependent doping effect of a two-dimensional material serves as a new mechanism and provides a scheme toward improving the performance of other semiconductor devices, especially optical and electronic devices based on low-dimensional materials.

Keywords: Surface charge transfer doping, ReS2, thickness, response time, responsivity, tetrafluorotetracyanoquinodimethane (F4-TCNQ)

References(51)

1

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

2

Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540.

3

Ho, C. H. ; Huang, Y. S. ; Tiong, K. K. In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. J. Alloys Compd. 2001, 317-318, 222–226.

4

Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; Van Der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.

5

Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

6

Varghese, A.; Saha, D.; Thakar, K.; Jindal, V.; Ghosh, S.; Medhekar, N. V.; Ghosh, S.; Lodha, S. Near-direct bandgap WSe2/ReS2 type-II pn heterojunction for enhanced ultrafast photodetection and high-performance photovoltaics. Nano Lett. 2020, 20, 1707–1717.

7

Tao, J. J.; Jiang, J. B.; Zhao, S. N.; Zhang, Y.; Li, X. X.; Fang, X. S.; Wang, P.; Hu, W. D.; Lee, Y. H.; Lu, H. L. et al. Fabrication of 1D Te/2D ReS2 mixed-dimensional van der Waals p-n heterojunction for high-performance phototransistor. ACS Nano 2021, 15, 3241–3250.

8

Tang, Y. X.; Hao, H.; Kang, Y.; Liu, Q. R.; Sui, Y. Z.; Wei, K.; Cheng, X. A.; Jiang, T. Distinctive interfacial charge behavior and versatile photoresponse performance in isotropic/anisotropic WS2/ReS2 heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 53475–53483.

9

Thakar, K.; Mukherjee, B.; Grover, S.; Kaushik, N.; Deshmukh, M.; Lodha, S. Multilayer ReS2 photodetectors with gate tunability for high responsivity and high-speed applications. ACS Appl. Mater. Interfaces 2018, 10, 36512–36522.

10

Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938–1944.

11

Mukherjee, B.; Zulkefli, A.; Watanabe, K.; Taniguchi, T.; Wakayama, Y.; Nakaharai, S. Laser-assisted multilevel non-volatile memory device based on 2D van-der-Waals few-layer-ReS2/h-BN/graphene heterostructures. Adv. Funct. Mater. 2020, 30, 2001688.

12

Jiang, J.; Ling, C. Y.; Xu, T.; Wang, W. H.; Niu, X. H.; Zafar, A.; Yan, Z. Z.; Wang, X. M.; You, Y. M.; Sun, L. T. et al. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 2018, 30, 1804332.

13

Wang, J. Y.; Zhou, Y. J.; Xiang, D.; Ng, S. J.; Watanabe, K.; Taniguchi, T.; Eda, G. Polarized light-emitting diodes based on anisotropic excitons in few-layer ReS2. Adv. Mater. 2020, 32, 2001890.

14

Zhong, J. H.; Zeng, C.; Yu, J.; Cao, L. K.; Ding, J. N.; Liu, Z. W.; Liu, Y. P. Direct observation of enhanced performance in suspended ReS2 photodetectors. Opt. Express 2021, 29, 3567–3574.

15

Chen, W.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S. Surface transfer doping of semiconductors. Prog. Surf. Sci. 2009, 84, 279–321.

16

Zhang, X. J.; Shao, Z. B.; Zhang, X. H.; He, Y. Y.; Jie, J. S. Surface charge transfer doping of low-dimensional nanostructures toward high-performance nanodevices. Adv. Mater. 2016, 28, 10409–10442.

17

Zhao, Y. D.; Xu, K.; Pan, F.; Zhou, C. J.; Zhou, F. C.; Chai, Y. Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater. 2017, 27, 1603484.

18

Ji, H. G.; Solís-Fernández, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 2019, 31, 1903613.

19

Wang, Y.; Wang, H. L.; Gali, S. M.; Turetta, N.; Yao, Y. F.; Wang, C.; Chen, Y. S.; Beljonne, D.; Samorì, P. Molecular doping of 2D indium selenide for ultrahigh performance and low-power consumption broadband photodetectors. Adv. Funct. Mater. 2021, 31, 2103353.

20

Li, M. J.; Lin, C. Y.; Yang, S. H.; Chang, Y. M.; Chang, J. K.; Yang, F. S.; Zhong, C. R.; Jian, W. B.; Lien, C. H.; Ho, C. H. et al. High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping. Adv. Mater. 2018, 30, 1803690.

21

Liu, Y. D.; Cai, Y.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.

22

Ferguson, A. J.; Reid, O. G.; Nanayakkara, S. U.; Ihly, R.; Blackburn, J. L. Efficiency of charge-transfer doping in organic semiconductors probed with quantitative microwave and direct-current conductance. J. Phys. Chem. Lett. 2018, 9, 6864–6870.

23

Jacobs, I. E.; Moulé, A. J. Controlling molecular doping in organic semiconductors. Adv. Mater. 2017, 29, 1703063.

24

Zhao, W. R.; Ding, J. M.; Zou, Y.; Di, C. A.; Zhu, D. B. Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 2020, 49, 7210–7228.

25

Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824–4831.

26

Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227.

27

Sun, J. C.; Wang, Y. Y.; Guo, S. Q.; Wan, B. S.; Dong, L. Q.; Gu, Y. D.; Song, C.; Pan, C. F.; Zhang, Q. H.; Gu, L. et al. Lateral 2D WSe2 p-n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics. Adv. Mater. 2020, 32, 1906499.

28

Lei, B.; Hu, Z. H.; Xiang, D.; Wang, J. Y.; Eda, G.; Han, C.; Chen, W. Significantly enhanced optoelectronic performance of tungsten diselenide phototransistor via surface functionalization. Nano Res. 2017, 10, 1282–1291.

29

Huo, N. J.; Konstantatos, G. Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat. Commun. 2017, 8, 572.

30

Li, H.; Wu, J.; Huang, X.; Lu, G.; Yang, J.; Lu, X.; Xiong, Q. H.; Zhang, H. Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 2013, 7, 10344–10353.

31

Dhara, A.; Chakrabarty, D.; Das, P.; Pattanayak, A. K.; Paul, S.; Mukherjee, S.; Dhara, S. Additional excitonic features and momentum-dark states in ReS2. Phys. Rev. B 2020, 102, 161404.

32

Aslan, O. B.; Chenet, D. A.; Van Der Zande, A. M.; Hone, J. C.; Heinz, T. F. Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photonics 2016, 3, 96–101.

33

Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

34

Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320–11329.

35

Zhang, S. Y.; Hill, H. M.; Moudgil, K.; Richter, C. A.; Walker, A. R. H.; Barlow, S.; Marder, S. R.; Hacker, C. A.; Pookpanratana, S. J. Controllable, wide-ranging n-doping and p-doping of monolayer group 6 transition-metal disulfides and diselenides. Adv. Mater. 2018, 30, 1806345.

36

Wu, Z. T.; Luo, Z. Z.; Shen, Y. T.; Zhao, W. W.; Wang, W. H.; Nan, H. Y.; Guo, X. T.; Sun, L. T.; Wang, X. R.; You, Y. M. et al. Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Res. 2016, 9, 3622–3631.

37

Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

38

Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.

39

Streetman, B. Carrier recombination and trapping effects in transient photoconductive decay measurements. J. Appl. Phys. 1966, 37, 3137–3144.

40

Haynes, J. R.; Hornbeck, J. A. Trapping of minority carriers in silicon. II. n-type silicon. Phys. Rev. 1955, 100, 606–615.

41

Simmons, J. G.; Taylor, G. Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps. Phys. Rev. B 1971, 4, 502–511.

42
Neamen, D. A. Semiconductor physics and devices; Irwin: Homewood, 1992.
43

Sah, C. T.; Shockley, W. Electron–hole recombination statistics in semiconductors through flaws with many charge conditions. Phys. Rev. 1958, 109, 1103–1115.

44

Yablonovitch, E.; Skromme, B. J.; Bhat, R.; Harbison, J. P.; Gmitter, T. J. Band bending, Fermi level pinning, and surface fixed charge on chemically prepared GaAs surfaces. Appl. Phys. Lett. 1989, 54, 555–557.

45

Nazir, G.; Rehman, M. A.; Khan, M. F.; Dastgeer, G.; Aftab, S.; Afzal, A. M.; Seo, Y.; Eom, J. Comparison of electrical and photoelectrical properties of ReS2 field-effect transistors on different dielectric substrates. ACS Appl. Mater. Interfaces 2018, 10, 32501–32509.

46

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

47

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

48

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

49

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

50

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

51

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

File
12274_2021_3954_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 July 2021
Revised: 27 September 2021
Accepted: 25 October 2021
Published: 26 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61904043) and the Natural Science Foundation of Zhejiang Province (No. LQ19A040009).

Return