Journal Home > Volume 15 , Issue 11

Cu wires (CuWs) are widely used as electric transmission lines. However, their limited thermal and chemical stabilities become challenges under the high-power and harsh environment. Graphene is regarded as an ideal protective barrier for CuW benefiting from its impermeability to all atoms and molecules. Particularly, the excellent hydrophobicity of vertical graphene (VG) will strengthen its protective capability as a corrosion and oxidation barrier. Herein, VG is directly synthesized on CuW by plasma-enhanced chemical vapor deposition method. The hydrophobic VG coating with a high water contact angle can effectively exclude the corrosive liquid and moisture from CuW surface and prevent their further penetration. Consequently, the electrochemical corrosion rate of VG-CuW is reduced by ~ 13, 8, and 2 times, compared with bare CuW, VG-CuW with hydrophilic treatment, and CuW coated with thick horizontal graphene layers, respectively. Negligible oxidation occurs on VG-CuW after the long-time exposure to humid air at ~ 200 °C along with the largely enhanced tolerance under high-current operating condition. This study reveals the impressive potentials of hydrophobic VG as a robust corrosion and oxidation barrier for metal wires used in high-power cables and electronic devices in harsh environment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vertical graphene-coated Cu wire for enhanced tolerance to high current density in power transmission

Show Author's information Kun Wang1,2,§Shuting Cheng2,3,§Qingmei Hu2,§Feng Yu1,2Yi Cheng1,2Kewen Huang1,2Hao Yuan1,2Jun Jiang2,3Wenjuan Li1,2Junliang Li2Shichen Xu1,2Jianbo Yin1,2Yue Qi1,2( )Zhongfan Liu1,2( )
Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Beijing Graphene Institute (BGI), Beijing 100095, China
State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China

§ Kun Wang, Shuting Cheng, and Qingmei Hu contributed equally to this work.

Abstract

Cu wires (CuWs) are widely used as electric transmission lines. However, their limited thermal and chemical stabilities become challenges under the high-power and harsh environment. Graphene is regarded as an ideal protective barrier for CuW benefiting from its impermeability to all atoms and molecules. Particularly, the excellent hydrophobicity of vertical graphene (VG) will strengthen its protective capability as a corrosion and oxidation barrier. Herein, VG is directly synthesized on CuW by plasma-enhanced chemical vapor deposition method. The hydrophobic VG coating with a high water contact angle can effectively exclude the corrosive liquid and moisture from CuW surface and prevent their further penetration. Consequently, the electrochemical corrosion rate of VG-CuW is reduced by ~ 13, 8, and 2 times, compared with bare CuW, VG-CuW with hydrophilic treatment, and CuW coated with thick horizontal graphene layers, respectively. Negligible oxidation occurs on VG-CuW after the long-time exposure to humid air at ~ 200 °C along with the largely enhanced tolerance under high-current operating condition. This study reveals the impressive potentials of hydrophobic VG as a robust corrosion and oxidation barrier for metal wires used in high-power cables and electronic devices in harsh environment.

Keywords: plasma-enhanced chemical vapor deposition, vertical graphene, Cu wire, oxidation and corrosion

References(45)

[1]
ASM Specialty Handbook: Copper and Copper Alloys; Davis, J. R., Ed.; ASM International: Novelty, Ohio, USA, 2001.
[2]
Kondo, K.; Akolkar, R. N.; Barkey, D. P.; Yokoi, M. Copper Electrodeposition for Nanofabrication of Electronics Devices; Springer: New York, 2014.
DOI
[3]

Cocke, D. L.; Schennach, R.; Hossain, M. A.; Mencer, D. E.; McWhinney, H.; Parga, J. R.; Kesmez, M.; Gomes, J. A. G.; Mollah, M. Y. A. The low-temperature thermal oxidation of copper, Cu3O2, and its influence on past and future studies. Vacuum 2005, 79, 71–83.

[4]

Finšgar, M.; Milošev, I. Inhibition of copper corrosion by 1,2,3-benzotriazole: A review. Corros. Sci. 2010, 52, 2737–2749.

[5]

Laibinis, P. E.; Whitesides, G. M. Self-assembled monolayers of n-alkanethiolates on copper are barrier films that protect the metal against oxidation by air. J. Am. Chem. Soc. 1992, 114, 9022–9028.

[6]

Jeong, S.; Woo, K.; Kim, D.; Lim, S.; Kim, J. S.; Shin, H.; Xia, Y. N.; Moon, J. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv. Funct. Mater. 2008, 18, 679–686.

[7]

Perera, D. Y. Physical ageing of organic coatings. Prog. Org. Coat. 2003, 47, 61–76.

[8]

Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462.

[9]

Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. F. Chemical vapor deposition method for graphene fiber materials. Acta Phys. Chim. Sin. 2022, 38, 2006046.

[10]

Zhao, S. Y.; Liu, X. J.; Xu, Z.; Ren, H. Y.; Deng, B.; Tang, M.; Lu, L. L.; Fu, X. F.; Peng, H. L.; Liu, Z. F. et al. Graphene encapsulated copper microwires as highly MRI compatible neural electrodes. Nano Lett. 2016, 16, 7731–7738.

[11]

Jang, L. W.; Zhang, L. M.; Menghini, M.; Cho, H.; Hwang, J. Y.; Son, D. I.; Locquet, J. P.; Seo, J. W. Multilayered graphene grafted copper wires. Carbon 2018, 139, 666–671.

[12]

Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495.

[13]

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

[14]

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

[15]

Jian, M. Q.; Zhang, Y. Y.; Liu, Z. F. Graphene fibers: Preparation, properties, and applications. Acta Phys. Chim. Sin. 2022, 38, 2007093.

[16]

Roy, S. S.; Arnold, M. S. Improving graphene diffusion barriers via stacking multiple layers and grain size engineering. Adv. Funct. Mater. 2013, 23, 3638–3644.

[17]

Xu, X. Z.; Yi, D.; Wang, Z. C.; Yu, J. C.; Zhang, Z. H.; Qiao, R. X.; Sun, Z. H.; Hu, Z. H.; Gao, P.; Peng, H. L. et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating. Adv. Mater. 2018, 30, 1702944.

[18]

Ren, S. M.; Cui, M. J.; Li, W. S.; Pu, J. B.; Xue, Q. J.; Wang, L. P. N-doping of graphene: Toward long-term corrosion protection of Cu. J. Mater. Chem. A 2018, 6, 24136–24148.

[19]

Yang, C. Y.; Bi, H.; Wan, D. Y.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. J. Mater. Chem. A 2013, 1, 770–775.

[20]

Qi, Y.; Deng, B.; Guo, X.; Chen, S. L.; Gao, J.; Li, T. R.; Dou, Z. P.; Ci, H. N.; Sun, J. Y.; Chen, Z. L. et al. Switching vertical to horizontal graphene growth using Faraday cage-assisted PECVD approach for high-performance transparent heating device. Adv. Mater. 2018, 30, 1704839.

[21]

Xu, S. C.; Wang, S. S.; Chen, Z.; Sun, Y. Y.; Gao, Z. F.; Zhang, H.; Zhang, J. Electric-field-assisted growth of vertical graphene arrays and the application in thermal interface materials. Adv. Funct. Mater. 2020, 30, 2003302.

[22]

Shan, J. J.; Wang, S.; Zhou, F.; Cui, L. Z.; Zhang, Y. F.; Liu, Z. F. Enhancing the heat-dissipation efficiency in ultrasonic transducers via embedding vertically oriented graphene-based porcelain radiators. Nano Lett. 2020, 20, 5097–5105.

[23]

Ci, H. N.; Chang, H. L.; Wang, R. Y.; Wei, T. B.; Wang, Y. Y.; Chen, Z. L.; Sun, Y. W.; Dou, Z. P.; Liu, Z. Q.; Li, J. M. et al. Enhancement of heat dissipation in ultraviolet light-emitting diodes by a vertically oriented graphene nanowall buffer layer. Adv. Mater. 2019, 31, 1901624.

[24]

Denysenko, I. B.; Xu, S.; Long, J. D.; Rutkevych, P. P.; Azarenkov, N. A.; Ostrikov, K. Inductively coupled Ar/CH4/H2 plasmas for low-temperature deposition of ordered carbon nanostructures. J. Appl. Phys. 2004, 95, 2713–2724.

[25]
Chabert, P.; Braithwaite, N. Physics of Radio-Frequency Plasmas; Cambridge University Press: Cambridge, 2011.
DOI
[26]

Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; van Tendeloo, G.; Vanhulsel, A.; van Haesendonck, C. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology 2008, 19, 305604.

[27]

Zhao, J.; Shaygan, M.; Eckert, J.; Meyyappan, M.; Rümmeli, M. H. A growth mechanism for free-standing vertical graphene. Nano Lett. 2014, 14, 3064–3071.

[28]

Zhu, M. Y.; Wang, J. J.; Holloway, B. C.; Outlaw, R. A.; Zhao, X.; Hou, K.; Shutthanandan, V.; Manos, D. M. A mechanism for carbon nanosheet formation. Carbon 2007, 45, 2229–2234.

[29]

Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930.

[30]

Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A. V.; Yavari, F.; Shi, Y. F.; Ajayan, P. M.; Koratkar, N. A. Wetting transparency of graphene. Nat. Mater. 2012, 11, 217–222.

[31]

Aikens, D. A. Electrochemical methods, fundamentals and applications. J. Chem. Educ. 1983, 60, A25.

[32]
Ahmad, Z. Principles of Corrosion Engineering and Corrosion Control; Butterworth-Heinemann: Amsterdam, 2006.
DOI
[33]

Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. Graphene: Corrosion-inhibiting coating. ACS Nano 2012, 6, 1102–1108.

[34]

Yu, F.; Camilli, L.; Wang, T.; Mackenzie, D. M. A.; Curioni, M.; Akid, R.; Bøggild, P. Complete long-term corrosion protection with chemical vapor deposited graphene. Carbon 2018, 132, 78–84.

[35]

Liu, D.; Zhao, W. J.; Liu, S.; Cen, Q. H.; Xue, Q. J. Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene. Surf. Coat. Technol. 2016, 286, 354–364.

[36]

López, V.; González, J. A.; Otero, E.; Escudero, E.; Morcillo, M. Atmospheric corrosion of bare and anodised aluminium in a wide range of environmental conditions. Part II: Electrochemical responses. Surf. Coat. Technol. 2002, 153, 235–244.

[37]
Orazem, M. E.; Tribollet, B. Electrochemical Impedance Spectroscopy; Wiley: Hoboken, 2008.
DOI
[38]

Zhang, Y.; Tian, J. W.; Zhong, J.; Shi, X. M. Thin nacre-biomimetic coating with super-anticorrosion performance. ACS Nano 2018, 12, 10189–10200.

[39]

Kwak, J.; Jo, Y.; Park, S. D.; Kim, N. Y.; Kim, S. Y.; Shin, H. J.; Lee, Z.; Kim, S. Y.; Kwon, S. Y. Oxidation behavior of graphene-coated copper at intrinsic graphene defects of different origins. Nat. Commun. 2017, 8, 1549.

[40]

Luo, D.; You, X. Q.; Li, B. W.; Chen, X. J.; Park, H. J.; Jung, M.; Ko, T. Y.; Wong, K.; Yousaf, M.; Chen, X. et al. Role of graphene in water-assisted oxidation of copper in relation to dry transfer of graphene. Chem. Mater. 2017, 29, 4546–4556.

[41]

Zhou, F.; Li, Z. T.; Shenoy, G. J.; Li, L.; Liu, H. T. Enhanced room-temperature corrosion of copper in the presence of graphene. ACS Nano 2013, 7, 6939–6947.

[42]

Khan, M. H.; Jamali, S. S.; Lyalin, A.; Molino, P. J.; Jiang, L.; Liu, H. K.; Taketsugu, T.; Huang, Z. G. Atomically thin hexagonal boron nitride nanofilm for Cu protection: The importance of film perfection. Adv. Mater. 2017, 29, 1603937.

[43]

Poulston, S.; Parlett, P. M.; Stone, P.; Bowker, M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 1996, 24, 811–820.

DOI
[44]

Ren, S. M.; Cui, M. J.; Pu, J. B.; Xue, Q. J.; Wang, L. P. Multilayer regulation of atomic boron nitride films to improve oxidation and corrosion resistance of Cu. ACS Appl. Mater. Interfaces 2017, 9, 27152–27165.

[45]

Chen, S. S.; Ji, H. X.; Chou, H.; Li, Q. Y.; Li, H. Y.; Suk, J. W.; Piner, R.; Liao, L.; Cai, W. W.; Ruoff, R. S. Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition. Adv. Mater. 2013, 25, 2062–2065.

File
12274_2021_3953_MOESM1_ESM.pdf (805.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 August 2021
Revised: 04 October 2021
Accepted: 25 October 2021
Published: 22 November 2021
Issue date: November 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key Basic Research Program of China (No. 2016YFA0200103), the National Natural Science Foundation of China (Nos. 51520105003, 51432002, and U1904193), Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001), Beijing Municipal Science & Technology Commission (Nos. Z201100008720006, Z181100004818001, and Z191100000819007), and Beijing Nova Program of Science and Technology (No. Z191100001119067).

Return