Journal Home > Volume 15 , Issue 4

Pt3Ni alloy structure is an effective strategy to accelerate ethanol oxidation reaction (EOR), while the stability in acid electrolyte is the fatal weakness and the current density still needs to be enhanced. Herein, ultralong Pt3Ni nanowires tailored by trace Mo (Mo/Pt3Ni NWs) were successfully synthesized by surfactant free method. The specific activity of the optimized catalyst was 2.66 mA·cm–2, which is approximately 2.16 and 4.6-fold that of Pt3Ni NWs and commercial Pt/C catalyst, respectively. Most importantly, the Mo/Pt3Ni NWs catalyst showed negligible structure degradation after 3,000 cycles (42 h) of durability test in 0.1 M HClO4 and 0.5 M ethanol, as compared to severe structural collapse and Ni dissolution for the pure Pt3Ni NWs. The density functional theory (DFT) calculation also confirmed that both the surface and subsurface Mo atom could form Pt-Mo and Ni-Mo bonds with Pt and Ni, which were stronger than Pt-Ni bonds, to pin the Ni atoms in the unstable position and suppress the dissolution of surface Ni. The findings of this study indicate a promising pathway for the design and engineering of durable alloy nanocatalysts for direct ethanol fuel cell applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly stable Pt3Ni ultralong nanowires tailored with trace Mo for the ethanol oxidation

Show Author's information Mingxuan Li1Yandi Cai2Jinjin Zhang3Haixiao Sun1Zhi Li1Yujie Liu1Xin Zhang1( )Xiaoping Dai1Fei Gao2Weiyu Song1( )
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
Sinopec Zhenhai Refining&Chemical Company, Ningbo 315207, China

Abstract

Pt3Ni alloy structure is an effective strategy to accelerate ethanol oxidation reaction (EOR), while the stability in acid electrolyte is the fatal weakness and the current density still needs to be enhanced. Herein, ultralong Pt3Ni nanowires tailored by trace Mo (Mo/Pt3Ni NWs) were successfully synthesized by surfactant free method. The specific activity of the optimized catalyst was 2.66 mA·cm–2, which is approximately 2.16 and 4.6-fold that of Pt3Ni NWs and commercial Pt/C catalyst, respectively. Most importantly, the Mo/Pt3Ni NWs catalyst showed negligible structure degradation after 3,000 cycles (42 h) of durability test in 0.1 M HClO4 and 0.5 M ethanol, as compared to severe structural collapse and Ni dissolution for the pure Pt3Ni NWs. The density functional theory (DFT) calculation also confirmed that both the surface and subsurface Mo atom could form Pt-Mo and Ni-Mo bonds with Pt and Ni, which were stronger than Pt-Ni bonds, to pin the Ni atoms in the unstable position and suppress the dissolution of surface Ni. The findings of this study indicate a promising pathway for the design and engineering of durable alloy nanocatalysts for direct ethanol fuel cell applications.

Keywords: electronic effect, ternary Pt-based alloy, one-dimensional nanowires, Mo decoration, direct ethanol fuel cells

References(59)

1

Gong, W. H.; Jiang, Z.; Wu, R. F.; Liu, Y.; Huang, L.; Hu, N.; Tsiakaras, P.; Shen, P. K. Cross-double dumbbell-like Pt-Ni nanostructures with enhanced catalytic performance toward the reactions of oxygen reduction and methanol oxidation. Appl. Catal. B Environ. 2019, 246, 277–283.

2

Kwon, H.; Kabiraz, M. K.; Park, J.; Oh, A.; Baik, H.; Choi, S. I.; Lee, K. Dendrite-embedded platinum-nickel multiframes as highly active and durable electrocatalyst toward the oxygen reduction reaction. Nano Lett. 2018, 18, 2930–2936.

3

Zhao, W. Y.; Ni, B.; Yuan, Q.; He, P. L.; Gong, Y.; Gu, L.; Wang, X. Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm particles for methanol oxidation. Adv. Energy Mater. 2017, 7, 1601593.

4

Wang, W.; Chen, X. J.; Ye, J. Y.; Zhang, Y. H.; Han, Y. C.; Chen, X. W.; Liu, K.; Xie, S. F. In situ surface-doped PtNiCoRh nanocrystals promote electrooxidation of C1 fuels. Sci. China Mater. 2021, 64, 1139–1149.

5

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

6
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: 10.1007/s12274-021-3794-0.
7

Fan, X. K.; Tang, M.; Wu, X. T.; Luo, S. P.; Chen, W.; Song, X.; Quan, Z. W. SnO2 patched ultrathin PtRh nanowires as efficient catalysts for ethanol electrooxidation. J. Mater. Chem. A 2019, 7, 27377–27382.

8

Zheng, Y.; Wan, X. J.; Cheng, X.; Cheng, K.; Dai, Z. F.; Liu, Z. H. Advanced catalytic materials for ethanol oxidation in direct ethanol fuel cells. Catalysts 2020, 10, 166.

9

Zhang, J. M.; Qu, X. M.; Han, Y.; Shen, L. F.; Yin, S. H.; Li, G.; Jiang, Y. X.; Sun, S. G. Engineering PtRu bimetallic nanoparticles with adjustable alloying degree for methanol electrooxidation: Enhanced catalytic performance. Appl. Catal. B Environ. 2020, 263, 118345.

10

Chang, F. F.; Shan, S. Y.; Petkov, V.; Skeete, Z.; Lu, A. L.; Ravid, J.; Wu, J. F.; Luo, J.; Yu, G.; Ren, Y. et al. Composition Tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis. J. Am. Chem. Soc. 2016, 138, 12166–12175.

11

Huang, J.; Liu, Y.; Xu, M. J.; Wan, C. Z.; Liu, H. T.; Li, M. F.; Huang, Z. H.; Duan, X. F. et al. PtCuNi tetrahedra catalysts with tailored surfaces for efficient alcohol oxidation. Nano Lett. 2019, 19, 5431–5436.

12

Tian, N.; Xiao, J.; Zhou, Z. Y.; Liu, H. X.; Deng, Y. J.; Huang, L.; Xu, B. B.; Sun, S. G. Pt-group bimetallic nanocrystals with high-index facets as high performance electrocatalysts. Faraday Discuss. 2013, 162, 77–89.

13

Banham, D.; Ye, S. Y. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: An industrial perspective. ACS Energy Lett. 2017, 2, 629–638.

14

Kong, Z. J.; Maswadeh, Y.; Vargas, J. A.; Shan, S. Y.; Wu, Z. P.; Kareem, H.; Leff, A. C.; Tran, D. T.; Chang, F. F.; Yan, S. et al. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions. J. Am. Chem. Soc. 2020, 142, 1287–1299.

15

Luo, B.; Zhao, F. L.; Xie, Z. X.; Yuan, Q.; Yang, F.; Yang, X. T.; Li, C. Z.; Zhou, Z. Y. Polyhedron-assembled ternary PtCuCo nanochains: Integrated functions enhance the electrocatalytic performance of methanol oxidation at elevated temperature. ACS Appl. Mater. Interfaces 2019, 11, 32282–32290.

16

Yu, K. M.; Ning, G. Q.; Yang, J. T.; Wang, Y.; Zhang, X.; Qin, Y. C.; Luan, C. L.; Yu, L.; Jiang, Y.; Luan, X. B. et al. Restructured PtNi on ultrathin nickel hydroxide for enhanced performance in hydrogen evolution and methanol oxidation. J. Catal. 2019, 375, 267–278.

17

Xie, Y. F.; Cai, J. Y.; Wu, Y. S.; Zang, Y. P.; Zheng, X. S.; Ye, J.; Cui, P. X.; Niu, S. W.; Liu, Y.; Zhu, J. et al. Boosting water dissociation kinetics on Pt-Ni nanowires by n-induced orbital tuning. Adv. Mater. 2019, 31, 1807780.

18

Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

19

Zhang, N.; Shao, Q.; Xiao, X. H.; Huang, X. Q. Advanced catalysts derived from composition-segregated platinum-nickel nanostructures: New opportunities and challenges. Adv. Funct. Mater. 2019, 29, 1808161.

20

Jia, Q. Y.; Zhao, Z. P.; Cao, L.; Li, J. K.; Ghoshal, S.; Davies, V.; Stavitski, E.; Attenkofer, K.; Liu, Z. Y.; Li, M. F. et al. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles. Nano Lett. 2018, 18, 798–804.

21

Wang, Y.; Zhuo, H. Y.; Sun, H.; Zhang, X.; Dai, X. P.; Luan, C. L.; Qin, C. L.; Zhao, H. H.; Li, J.; Wang, M. L. et al. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: Promoting highly active sites for ethylene glycol oxidation. ACS Catal. 2019, 9, 442–455.

22

Wang, Y.; Zheng, M.; Sun, H.; Zhan, X.; Luan, C. L.; Li, Y. R.; Zhao, L.; Zhao, H. H.; Dai, X. P.; Ye, J. Y. et al. Catalytic Ru containing Pt3Mn nanocrystals enclosed with high-indexed facets: Surface alloyed Ru makes Pt more active than Ru particles for ethylene glycol oxidation. Appl. Catal. B Environ. 2019, 253, 11–20.

23

Li, Y. R.; Wang, Y.; Li, S. N.; Li, M. X.; Liu, Y. J.; Fang, X.; Dai, X. P.; Zhang, X. Pt3Mn alloy nanostructure with high-index facets by Sn doping modified for highly catalytic active electro-oxidation reactions. J. Catal. 2021, 395, 282–292.

24

Qin, Y. C.; Zhang, W. L.; Guo, K.; Liu, X. B.; Liu, J. Q.; Liang, X. Y.; Wang, X. P.; Gao, D. W.; Gan, L. Y.; Zhu, Y. T. et al. Fine-tuning intrinsic strain in penta-twinned Pt-Cu-Mn nanoframes boosts oxygen reduction catalysis. Adv. Funct. Mater. 2020, 30, 1910107.

25

Qin, C. L.; Fan, A. X.; Zhang, X.; Dai, X. P.; Sun, H.; Ren, D. H.; Dong, Z.; Wang, Y.; Luan, C. L.; Ye, J. Y. et al. The in situ etching assisted synthesis of Pt-Fe-Mn ternary alloys with high-index facets as efficient catalysts for electro-oxidation reactions. Nanoscale 2019, 11, 9061–9075.

26

Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118.

27

Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.

28

Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

29

Wang, Y.; Zhuo, H. Y.; Zhang, X.; Li, Y. R.; Yang, J. T.; Liu, Y. J.; Dai, X. P.; Li, M. X.; Zhao, H. H.; Cui, M. L. et al. Interfacial synergy of ultralong jagged Pt85Mo15-S nanowires with abundant active sites on enhanced hydrogen evolution in an alkaline solution. J. Mater. Chem. A 2019, 7, 24328–24336.

30

Fichtner, J.; Watzele, S.; Garlyyev, B.; Kluge, R. M.; Haimerl, F.; El-Sayed, H. A.; Li, W. J.; Maillard, F. M.; Dubau, L.; Chattot, R. et al. Tailoring the oxygen reduction activity of Pt nanoparticles through surface defects: A simple top-down approach. ACS Catal. 2020, 10, 3131–3142.

31

Gao, F.; Zhang, Y. P.; Ren, F. F.; Song, T. X.; Du, Y. K. Tiny Ir doping of sub-one-nanometer PtMn nanowires: Highly active and stable catalysts for alcohol electrooxidation. Nanoscale 2020, 12, 12098–12105.

32

Jiang, K. Z.; Zhao, D. D.; Guo, S. J.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Q. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 2017, 3, e1601705.

33

Huang, L. P.; Zhang, W.; Zhong, Y. F.; Li, P.; Xiang, D.; Uddin, W.; Li, X. W.; Wang, Y. G.; Yuan, X. Y.; Wang, D. S. et al. Surface-structure tailoring of ultrafine PtCu nanowires for enhanced electrooxidation of alcohols. Sci. China Mater. 2021, 64, 601–610.

34

Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480–9485.

35

Lu, Q. Q.; Sun, L. T.; Zhao, X.; Huang, J. S.; Han, C.; Yang, X. R. One-pot synthesis of interconnected Pt95Co5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction. Nano Res. 2018, 11, 2562–2572.

36

Liu, Z. F.; Hu, J. E.; Wang, Q.; Gaskell, K.; Frenkel, A. I.; Jackson, G. S.; Eichhorn, B. PtMo alloy and MoOx@Pt core-shell nanoparticles as highly CO-tolerant electrocatalysts. J. Am. Chem. Soc. 2009, 131, 6924–6925.

37

Dionigi, F.; Weber, C. C.; Primbs, M.; Gocyla, M.; Bonastre, A. M.; Spöri, C.; Schmies, H.; Hornberger, E.; Kühl, S.; Drnec, J. et al. Controlling near-surface Ni composition in octahedral PtNi(Mo) nanoparticles by Mo doping for a highly active oxygen reduction reaction catalyst. Nano Lett. 2019, 19, 6876–6885.

38

Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Xie, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

39

Deng, K.; Xu, Y.; Yang, D. D.; Qian, X. Q.; Dai, Z. C.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Pt-Ni-P nanocages with surface porosity as efficient bifunctional electrocatalysts for oxygen reduction and methanol oxidation. J. Mater. Chem. A 2019, 7, 9791–9797.

40

Zhang, X.; Wang, S. B.; Wu, C. S.; Li, H.; Cao, Y.; Li, S. G.; Xia, H. B. Synthesis of S-doped AuPbPt alloy nanowire-networks as superior catalysts towards the ORR and HER. J. Mater. Chem. A 2020, 8, 23906–23918.

41

Park, J.; Kim, H. J.; Oh, A.; Kwon, T.; Baik, H.; Choi, S. I.; Lee, K. RuOx-decorated multimetallic hetero-nanocages as highly efficient electrocatalysts toward the methanol oxidation reaction. Nanoscale 2018, 10, 21178–21185.

42

Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

43

Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2014, 53, 12522–12527.

44

Wang, D. D.; Chen, Z. W.; Huang, Y. C.; Li, W.; Wang, J.; Lu, Z. L.; Gu, K. Z.; Wang, T. H.; Wu, Y. J.; Chen, C. et al. Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Sci. China Mater. 2021, 64, 2454–2466.

45

Zheng, J.; Cullen, D. A.; Forest, R. V.; Wittkopf, J. A.; Zhuang, Z. B.; Sheng, W. C.; Chen, J. G.; Yan, Y. S. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol. ACS Catal. 2015, 5, 1468–1474.

46

Hong, W.; Shang, C. S.; Wang, J.; Wang, E. K. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910–2915.

47

Li, M. X.; Wang, Y.; Cai, J.; Li, Y. R.; Liu, Y. J.; Dong, Y.; Li, S. N.; Yuan, X. L.; Zhang, X.; Dai, X. P. Surface sites assembled-strategy on Pt-Ru nanowires for accelerated methanol oxidation. Dalton Trans. 2020, 49, 13999–14008.

48

Bai, J.; Xiao, X.; Xue, Y. Y.; Jiang, J. X.; Zeng, J. H.; Li, X. F.; Chen, Y. Bimetallic platinum-rhodium alloy nanodendrites as highly active electrocatalyst for the ethanol oxidation reaction. ACS Appl. Mater. Interfaces 2018, 10, 19755–19763.

49

Jiang, L.; Hsu, A.; Chu, D.; Chen, R. Ethanol electro-oxidation on Pt/C and PtSn/C catalysts in alkaline and acid solutions. Int. J. Hyd. Energy 2010, 35, 365–372.

50

Rizo, R.; Sebastián, D.; Lázaro, M. J.; Pastor, E. On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B Environ. 2017, 200, 246–254.

51

Sieben, J. M.; Duarte, M. M. E. Nanostructured Pt and Pt-Sn catalysts supported on oxidized carbon nanotubes for ethanol and ethylene glycol electro-oxidation. Int. J. Hyd. Energy 2011, 36, 3313–3321.

52

Liu, K.; Wang, W.; Guo, P. H.; Ye, J. Y.; Wang, Y. Y.; Li, P. T.; Lyu, Z.; Geng, Y. S.; Liu, M. C.; Xie, S. F. Replicating the defect structures on ultrathin Rh nanowires with Pt to achieve superior electrocatalytic activity toward ethanol oxidation. Adv. Funct. Mater. 2019, 29, 1806300.

53

Yang, X. T.; Yao, K. X.; Ye, J. Y.; Yuan, Q.; Zhao, F. L.; Li, Y. F.; Zhou, Z. Y. Interface-rich three-dimensional Au-doped PtBi intermetallics as highly effective anode catalysts for application in alkaline ethylene glycol fuel cells. Adv. Funct. Mater. 2021, 31, 2103671.

54

Zhao, F. L.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; Zhou, Z. Y. Realizing a CO-free pathway and enhanced durability in highly dispersed Cu-doped PtBi nanoalloys towards methanol full electrooxidation. J. Mater. Chem. A 2020, 8, 11564–11572.

55

Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Yang, X. T.; Zhang, Q. H.; Xu, H.; Guo, Y. L.; Yang, S.; Zhou, Z. Y.; Gu, L. et al. Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv. Mater. 2021, 21, 2103383.

56

Liu, Y. F.; Wei, M. J.; Raciti, D.; Wang, Y. X.; Hu, P. F.; Park, J. H.; Barclay, M.; Wang, C. Electro-oxidation of ethanol using Pt3Sn alloy nanoparticles. ACS Catal. 2018, 8, 10931–10937.

57

Cao, L.; Mueller, T. Theoretical insights into the effects of oxidation and Mo-doping on the structure and stability of Pt-Ni nanoparticles. Nano Lett. 2016, 16, 7748–7754.

58

Zhu, Y. M.; Bu, L. Z.; Shao, Q.; Huang, X. Q. Subnanometer PtRh nanowire with alleviated poisoning effect and enhanced C-C bond cleavage for ethanol oxidation electrocatalysis. ACS Catal. 2019, 9, 6607–6612.

59

Yu, L.; Zhou, T. T.; Cao, S. H.; Tai, X. S.; Liu, L. L.; Wang, Y. Suppressing the surface passivation of Pt-Mo nanowires via constructing Mo-Se coordination for boosting HER performance. Nano Res. 2020, 14, 2659–2665.

File
12274_2021_3952_MOESM1_ESM.pdf (615.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 September 2021
Revised: 17 October 2021
Accepted: 22 October 2021
Published: 12 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (NSFC) (No. 21573286), the Key Scientific and Technological Innovation projects in Shandong Province (No. 2019JZZY010343), and the open fund of Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University.

Return