Journal Home > Volume 15 , Issue 4

NH3 is an essential feedstock for fertilizer synthesis. Industry-scale NH3 synthesis mostly relies on the Haber–Bosch method, however, which suffers from massive CO2 emission and high energy consumption. Electrocatalytic NO3 reduction is an attractive substitute to the Haber–Bosch method for synthesizing NH3 under mild conditions. As this reaction will produce a variety of products, it highly desires efficient and selective electrocatalyst for NH3 generation. Here, we report in situ grown Fe3O4 particle on stainless steel (Fe3O4/SS) as a high-efficiency electrocatalyst for NO3 reduction to NH3. In 0.1 M NaOH with 0.1 M NaNO3, such Fe3O4/SS reaches a remarkable Faradaic efficiency of 91.5% and a high NH3 yield of 10,145 μg·h–1·cm–2 at –0.5 V vs. reversible hydrogen electrode (RHE). Furthermore, it owns robust structural and electrochemical stability. This work provides useful guidelines to expand the scope of metallic oxide electrocatalysts for NH3 synthesis. The catalytic mechanism is uncovered and discussed further by theoretical calculations.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia

Show Author's information Xiaoya Fan1Lisi Xie2Jie Liang1Yuchun Ren1Longcheng Zhang1Luchao Yue1Tingshuai Li1Yonglan Luo2Na Li3Bo Tang3Yang Liu4Shuyan Gao4Abdulmohsen Ali Alshehri5Qian Liu2( )Qingquan Kong2( )Xuping Sun1( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

NH3 is an essential feedstock for fertilizer synthesis. Industry-scale NH3 synthesis mostly relies on the Haber–Bosch method, however, which suffers from massive CO2 emission and high energy consumption. Electrocatalytic NO3 reduction is an attractive substitute to the Haber–Bosch method for synthesizing NH3 under mild conditions. As this reaction will produce a variety of products, it highly desires efficient and selective electrocatalyst for NH3 generation. Here, we report in situ grown Fe3O4 particle on stainless steel (Fe3O4/SS) as a high-efficiency electrocatalyst for NO3 reduction to NH3. In 0.1 M NaOH with 0.1 M NaNO3, such Fe3O4/SS reaches a remarkable Faradaic efficiency of 91.5% and a high NH3 yield of 10,145 μg·h–1·cm–2 at –0.5 V vs. reversible hydrogen electrode (RHE). Furthermore, it owns robust structural and electrochemical stability. This work provides useful guidelines to expand the scope of metallic oxide electrocatalysts for NH3 synthesis. The catalytic mechanism is uncovered and discussed further by theoretical calculations.

Keywords: electrocatalysis, Fe3O4 particle , NO3 reduction reaction , NH3 synthesis

References(49)

1

Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

2

Valera-Medina, A.; Xiao, H.; Jones, M. O.; David, W. I. F.; Bowen, P. J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102.

3

Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.

4

Chang, C. C.; Li, S. R.; Chou, H. L.; Lee, Y. C.; Patil, S.; Lin, Y. S.; Chang, C. C.; Chang. Y. J.; Wang, D. Y. Photoactive earth-abundant iron pyrite catalysts for electrocatalytic nitrogen reduction reaction. Small 2019, 15, 1904723.

5

Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlögl, R. The Haber–Bosch process revisited: On the real structure and stability of “ammonia iron” under working conditions. Angew. Chem., Int. Ed. 2013, 52, 12723–12726.

6

Cheema, I. I.; Krewer, U. Operating envelope of Haber–Bosch process design for power-to-ammonia. RSC Adv. 2018, 8, 34926–34936.

7

Patil, S. B.; Wang, D. Y. Exploration and investigation of periodic elements for electrocatalytic nitrogen reduction. Small 2020, 16, 2002885.

8

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

9

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res 2022, 15, 972–977.

10

Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 132, 9798–9805.

11

Wen, G. L.; Liang, J.; Zhang, L. C.; Li, T. S.; Liu, Q.; An, X. G.; Shi, X. F.; Liu, Y.; Gao, S. Y.; Asiri, A. M. et al. Ni2P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions. J. Colloid Interface Sci. 2022, 606, 1055–1063.

12

Liang, J.; Deng, B.; Liu, Q.; Wen, G. L.; Liu, Q.; Li, T. S.; Luo, Y. L.; Alshehri, A. A.; Alzahrani, K. A.; Ma, D. W. et al. High-efficiency electrochemical nitrite reduction to ammonium using a Cu3P nanowire array under ambient conditions. Green Chem. 2021, 23, 5487–5493.

13

Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

14

Patil, S. B.; Chou, H. L.; Chen, Y. M.; Hsieh, S. H.; Chen, C. H.; Chang, C. C.; Li, S. R.; Lee, Y. C.; Lin, Y. S.; Li, H. et al. Enhanced N2 affinity of 1T-MoS2 with a unique pseudo-six-membered ring consisting of N-Li-S-Mo-S-Mo for high ambient ammonia electrosynthesis performance. J. Mater. Chem. A 2021, 9, 1230–1239.

15

Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

16

Gruber, N.; Galloway, J. N. An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.

17

Liu, Y.; Lv, J. P.; Feng, J.; Liu, Q.; Nan, F. R.; Xie, S. L. Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. J. Chem. Technol. Biotechnol. 2019, 94, 900–910.

18

Stjepanović, M.; Velić, N.; Lončarić, A.; Gašo-Sokač, D.; Bušić, V.; Habuda-Stanić, M. Adsorptive removal of nitrate from wastewater using modified lignocellulosic waste material. J. Mol. Liq. 2019, 285, 535–544.

19

Xu, D.; Li, Y.; Yin, L. F.; Ji, Y. Y.; Niu, J. F.; Yu, Y. X. Electrochemical removal of nitrate in industrial wastewater. Front. Environ. Sci. Eng. 2018, 12, 9.

20

Patil, S. B.; Liu, T. R.; Chou, H. L.; Huang, Y. B.; Chang, C. C.; Chen, Y. C.; Lin, Y. S.; Li, H.; Lee, Y. C.; Chang, Y. J. et al. Electrocatalytic reduction of NO3 to ultrapure ammonia on {200} facet dominant Cu nanodendrites with high conversion faradaic efficiency. J. Phys. Chem. Lett. 2021, 12, 8121–8128.

21

Wurtsbaugh, W. A.; Paerl, H. W.; Dodds, W. K. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs Water 2019, 6, e1373.

22

Vinçon-Leite, B.; Casenave, C. Modelling eutrophication in lake ecosystems: A review. Sci. Total Environ. 2019, 651, 2985–3001.

23

Meng, C.; Tian, D. S.; Zeng, H.; Li, Z. L.; Yi, C. X.; Niu, S. L. Global soil acidification impacts on belowground processes. Environ. Res. Lett. 2019, 14, 074003.

24

Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

25

Li, Z. R.; Wen, G. L.; Liang, J.; Li, T. S.; Luo, Y. L.; Kong, Q. Q.; Shi, X. F.; Asiri, A. M.; Liu, Q.; Sun, X. P. High-efficiency nitrate electroreduction to ammonia on electrodeposited cobalt-phosphorus alloy film. Chem. Commun. 2021, 57, 9720–9723.

26

Tokazhanov, G.; Ramazanova, E.; Hamid, S.; Bae, S.; Lee, W. Advances in the catalytic reduction of nitrate by metallic catalysts for high efficiency and N2 selectivity: A review. Chem. Eng. J. 2020, 384, 123252.

27

Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.

28

Eady, R. R. Structure-function relationships of alternative nitrogenases. Chem. Rev. 1996, 96, 3013–3030.

29

Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.

30

Li, P. P.; Jin, Z. Y.; Fang, Z. W.; Yu, G. H. A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy Environ. Sci. 2021, 14, 3522–3531.

31

Duan, W. J.; Li, G.; Lei, Z. C.; Zhu, T. H.; Xue, Y. Z.; Wei, C. H.; Feng, C. H. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Water Res. 2019, 161, 126–135.

32

Evans, B. J. Experimental studies of the electrical conductivity and phase transition in Fe3O4. AIP Conf. Proc. 1975, 24, 73–78.

33

Huang, L.; Zeng, T.; Xu, X. Y.; He, Z. Q.; Chen, J. M.; Song, S. Immobilized hybrids between nitrogen-doped carbon and stainless steel derived Fe3O4 used as a heterogeneous activator of persulfate during the treatment of aqueous carbamazepine. Chem. Eng. J. 2019, 372, 862–872.

34

Zhu, M. F.; Zhu, L.; Wang, J. L.; Yue, T. L.; Li, R. H.; Li, Z. H. Adsorption of Cd(II) and Pb(II) by in situ oxidized Fe3O4 membrane grafted on 316L porous stainless steel filter tube and its potential application for drinking water treatment. J. Environ. Manage. 2017, 196, 127–136.

35

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

36

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

37

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

38

Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys. Rev. B 2004, 70, 235121.

39

Cococcioni, M.; de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 2005, 71, 035105.

40

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

41

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

42

Solomon, N.; Solomon, I. Effect of deformation-induced phase transformation on AISI 316 stainless steel corrosion resistance. Eng. Fail. Anal. 2017, 79, 865–875.

43

Huang, X. G.; Qiao, M.; Lu, X. C.; Li, Y. F.; Ma, Y. B.; Kang, B.; Quan, B.; Ji, G. B. Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 2021, 14, 4006–4013.

44

Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Yu, X.; Wang, C.; Ma, T. L. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2019, 12, 2774–2780.

45

Jung, R. H.; Tsuchiya, H.; Fujimoto, S. XPS characterization of passive films formed on type 304 stainless steel in humid atmosphere. Corros. Sci. 2012, 58, 62–68.

46

Tan, C.; Gao, N.; Deng, Y.; Deng, J.; Zhou, S.; Li, J.; Xin, X. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate. J. Hazard. Mater. 2014, 276, 452–460.

47

Lin, T. W.; Dai, C. S.; Hung, K. C. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes. Sci. Rep. 2014, 4, 7274.

48

Long, C. L.; Wei, T.; Yan, J.; Jiang, L. L.; Fan, Z. J. Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials. ACS Nano 2013, 7, 11325–11332.

49

Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Shao, C.; Guo, Y. Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2008533.

File
12274_2021_3951_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 September 2021
Revised: 19 October 2021
Accepted: 22 October 2021
Published: 20 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22072015).

Return