Journal Home > Volume 15 , Issue 11

Covalent organic frameworks (COFs) have been broadly investigated for energy storage systems. However, many COF-based anode materials suffer from low utilization of redox-active sites and sluggish ions/electrons transport caused by their densely stacked layers. Thus, it is still a great challenge to obtain COF-based anode materials with fast ions/electrons transport and thus superior rate performance. Herein, a redox-active piperazine-terephthalaldehyde (PA-TA) COF with ultra-large interlayer distance is designed and synthesized for high-rate anode material, which contains piperazine units adopting a chair-shaped conformation with the nonplanar linkages of a tetrahedral configuration. This unique structure renders PA-TA COF an ultra-large interlayer distance of 6.2 Å, and further enables it to achieve outstanding rate and cycling performance. With a high specific capacity of 543 mAh·g−1 even after 400 cycles at 1.0 A·g−1, it still could afford a specific capacity of 207 mAh·g−1 even at a high current density of 5.0 A·g−1. Our study indicates that expanding the interlayer distance of COFs by rational molecular design would be of great importance to develop high-rate electrode materials for lithium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries

Show Author's information Manman Wu1,2,3Yang Zhao1,3Hongtao Zhang1,3Jie Zhu1,3Yanfeng Ma1,3Chenxi Li1,3Yamin Zhang4Yongsheng Chen1,3( )
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

Abstract

Covalent organic frameworks (COFs) have been broadly investigated for energy storage systems. However, many COF-based anode materials suffer from low utilization of redox-active sites and sluggish ions/electrons transport caused by their densely stacked layers. Thus, it is still a great challenge to obtain COF-based anode materials with fast ions/electrons transport and thus superior rate performance. Herein, a redox-active piperazine-terephthalaldehyde (PA-TA) COF with ultra-large interlayer distance is designed and synthesized for high-rate anode material, which contains piperazine units adopting a chair-shaped conformation with the nonplanar linkages of a tetrahedral configuration. This unique structure renders PA-TA COF an ultra-large interlayer distance of 6.2 Å, and further enables it to achieve outstanding rate and cycling performance. With a high specific capacity of 543 mAh·g−1 even after 400 cycles at 1.0 A·g−1, it still could afford a specific capacity of 207 mAh·g−1 even at a high current density of 5.0 A·g−1. Our study indicates that expanding the interlayer distance of COFs by rational molecular design would be of great importance to develop high-rate electrode materials for lithium-ion batteries.

Keywords: lithium-ion batteries, high-rate anode material, covalent organic frameworks, ultra-large interlayer distance

References(36)

[1]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[2]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[3]

Kim, H.; Choi, W.; Yoon, J.; Um, J. H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W. S. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem. Rev. 2020, 120, 6934–6976.

[4]

Lu, Y.; Zhang, Q.; Chen, J. Recent progress on lithium-ion batteries with high electrochemical performance. Sci. China Chem. 2019, 62, 533–548.

[5]

Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143.

[6]

Aravindan, V.; Lee, Y. S.; Madhavi, S. Research progress on negative electrodes for practical Li-ion batteries: Beyond carbonaceous anodes. Adv. Energy Mater. 2015, 5, 1402225.

[7]

Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S. K.; Lim, H. D.; Kang, K. Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv. Mater. 2018, 30, 1704682.

[8]

Schon, T. B.; McAllister, B. T.; Li, P. F.; Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 2016, 45, 6345–6404.

[9]

Muench, S.; Wild, A.; Friebe, C.; Häupler, B.; Janoschka, T.; Schubert, U. S. Polymer-based organic batteries. Chem. Rev. 2016, 116, 9438–9484.

[10]

Zhao, Y.; Wu, M. M.; Chen, H. B.; Zhu, J.; Liu, J.; Ye, Z. T.; Zhang, Y.; Zhang, H. T.; Ma, Y. F.; Li, C. X. et al. Balance cathode-active and anode-active groups in one conjugated polymer towards high-performance all-organic lithium-ion batteries. Nano Energy 2021, 86, 106055.

[11]

Wu, J. S.; Rui, X. H.; Wang, C. Y.; Pei, W. B.; Lau, R.; Yan, Q. Y.; Zhang, Q. C. Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high capacity. Adv. Energy Mater. 2015, 5, 1402189.

[12]

Han, X. Y.; Qing, G. Y.; Sun, J. T.; Sun, T. L. How many lithium ions can be inserted onto fused C6 aromatic ring systems? Angew. Chem., Int. Ed. 2012, 51, 5147–5151.

[13]

Wu, J. S.; Rui, X. H.; Long, G. K.; Chen, W. Q.; Yan, Q. Y.; Zhang, Q. C. Pushing up lithium storage through nanostructured polyazaacene analogues as anode. Angew. Chem., Int. Ed. 2015, 54, 7354–7358.

[14]

Lin, Z. Q.; Xie, J.; Zhang, B. W.; Li, J. W.; Weng, J. N.; Song, R. B.; Huang, X.; Zhang, H.; Li, H.; Liu, Y. et al. Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. Nano Energy 2017, 41, 117–127.

[15]

Yao, C. J.; Wu, Z. Z.; Xie, J.; Yu, F.; Guo, W.; Xu, Z. J.; Li, D. S.; Zhang, S. Q.; Zhang, Q. C. Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. ChemSusChem. 2020, 13, 2457–2463.

[16]

Lei, Z. D.; Chen, X. D.; Sun, W. W.; Zhang, Y.; Wang, Y. Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv. Energy Mater. 2019, 9, 1801010.

[17]

Chen, X. D.; Li, Y. S.; Wang, L.; Xu, Y.; Nie, A. M.; Li, Q. Q.; Wu, F.; Sun, W. W.; Zhang, X.; Vajtai, R. et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 2019, 31, 1901640.

[18]

Lei, Z. D.; Yang, Q. S.; Xu, Y.; Guo, S. Y.; Sun, W. W.; Liu, H.; Lv, L. P.; Zhang, Y.; Wang, Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nat. Commun. 2018, 9, 576.

[19]

Wu, M. M.; Zhao, Y.; Sun, B. Q.; Sun, Z. H.; Li, C. X.; Han, Y.; Xu, L. Q.; Ge, Z.; Ren, Y. X.; Zhang, M. T. et al. A 2D covalent organic framework as a high-performance cathode material for lithium-ion batteries. Nano Energy 2020, 70, 104498.

[20]

Xie, H. Y.; Hao, Q.; Jin, H. C.; Xie, S.; Sun, Z. W.; Ye, Y. D.; Zhang, C. H.; Wang, D.; Ji, H. X.; Wan, L. J. Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: A mechanism based on a Galton board. Sci. China Chem. 2020, 63, 1306–1314.

[21]

Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.

[22]
Kong, L. J.; Liu, M.; Huang, H.; Xu, Y. H.; Bu, X. H. Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv. Energy Mater., in press, DOI: 10.1002/aenm.202100172.
[23]

Zhou, L. M.; Jo, S.; Park, M.; Fang, L.; Zhang, K.; Fan, Y. P.; Hao, Z. M.; Kang, Y. M. Structural engineering of covalent organic frameworks for rechargeable batteries. Adv. Energy Mater. 2021, 11, 2003054.

[24]
Kandambeth, S.; Kale, V. S.; Shekhah, O.; Alshareef, H. N.; Eddaoudi, M. 2D covalent-organic framework electrodes for supercapacitors and rechargeable metal-ion batteries. Adv. Energy Mater., in press, DOI: 10.1002/aenm.202100177.
[25]

Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.

[26]

Sun, T.; Xie, J.; Guo, W.; Li, D. S.; Zhang, Q. C. Covalent-organic frameworks: Advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 2020, 10, 1904199.

[27]

Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 2017, 139, 4258–4261.

[28]

Jiang, S. Y.; Gan, S. X.; Zhang, X.; Li, H.; Qi, Q. Y.; Cui, F. Z.; Lu, J.; Zhao, X. Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde. J. Am. Chem. Soc. 2019, 141, 14981–14986.

[29]

Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

[30]

Xu, S. Q.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W. B.; Zhuang, X. D.; Brunner, E.; Heine, T.; Berger, R. et al. A nitrogen-rich 2D sp2-carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 849–853.

[31]

Zhao, G. F.; Zhang, Y. H.; Gao, Z. H.; Li, H. N.; Liu, S. M.; Cai, S.; Yang, X. F.; Guo, H.; Sun, X. L. Dual active site of the azo and carbonyl-modified covalent organic framework for high-performance Li storage. ACS Energy Lett. 2020, 5, 1022–1031.

[32]

Sun, R. M.; Hou, S.; Luo, C.; Ji, X.; Wang, L. N.; Mai, L. Q.; Wang, C. S. A covalent organic framework for fast-charge and durable rechargeable Mg storage. Nano Lett. 2020, 20, 3880–3888.

[33]

Wang, G.; Chandrasekhar, N.; Biswal, B. P.; Becker, D.; Paasch, S.; Brunner, E.; Addicoat, M.; Yu, M. H.; Berger, R.; Feng, X. L. A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage. Adv. Mater. 2019, 31, 1901478.

[34]

Wang, Y. R.; Liu, Z. T.; Wang, C. X.; Hu, Y.; Lin, H. N.; Kong, W. H.; Ma, J.; Jin, Z. π-Conjugated polyimide-based organic cathodes with extremely-long cycling life for rechargeable magnesium batteries. Energy Storage Mater. 2020, 26, 494–502.

[35]

Wu, C. G.; Hu, M. J.; Yan, X. R.; Shan, G. C.; Liu, J. Z.; Yang, J. Azo-linked covalent triazine-based framework as organic cathodes for ultrastable capacitor-type lithium-ion batteries. Energy Storage Mater. 2021, 36, 347–354.

[36]

Han, C. P.; Tong, J.; Tang, X.; Zhou, D.; Duan, H.; Li, B. H.; Wang, G. X. Boost anion storage capacity using conductive polymer as a pseudocapacitive cathode for high-energy and flexible lithium ion capacitors. ACS Appl. Mater. Interfaces 2020, 12, 10479–10489.

File
12274_2021_3950_MOESM1_ESM.pdf (419.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 September 2021
Revised: 18 October 2021
Accepted: 23 October 2021
Published: 23 November 2021
Issue date: November 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from Ministry of Science and Technology of China (No. 52090034), the National Natural Science Foundation of China (No. 51633002), and Higher Education Discipline Innovation Project (No. B12015).

Return