Journal Home > Volume 15 , Issue 4

Despite immunotherapy involving immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, the clinical efficacy is limited due to ICI resistance. Pyroptosis is a gasdermin-mediated programmed cell death that enhances responses to ICIs. However, nontargeted elicitation of pyroptosis may induce systemic side effects and toxicity. Therefore, we reasonably design and construct a tumor-specific prodrug that combines the heat shock protein 90 inhibitor tanespimycin (17-AAG) with the photosensitizer chlorin e6 (Ce6) to induce pyroptosis, by utilizing the high glutathione level in the tumor microenvironment. The released Ce6 and 17-AAG produce reactive oxygen species by laser triggering, which induces gasdermin E-mediated pyroptosis. Furthermore, 17-AAG reduces myeloid-derived suppressor cells and sensitizes tumors to anti-programmed death-1 (PD-1) therapy. Thus, our prodrug strategy achieves tumor-targeted pyroptosis to suppress tumor growth, thereby improving the response to anti-PD-1 therapy and extending the survival of 4T1 breast tumor-bearing mice. Consequently, this pyroptosis-based prodrug represents a novel strategy for enforcing immunogenic photodynamic therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Inspired heat shock protein alleviating prodrug enforces immunogenic photodynamic therapy by eliciting pyroptosis

Show Author's information Junjie Zhou1,§Xianbin Ma2,§Hao Li1Derun Chen1Liang Mao1Leilei Yang1Tian Zhang2Wei Qiu2Zhigang Xu2( )Zhi-Jun Sun1 ( )
The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, China

§ Junjie Zhou and Xianbin Ma contributed equally to this work.

Abstract

Despite immunotherapy involving immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, the clinical efficacy is limited due to ICI resistance. Pyroptosis is a gasdermin-mediated programmed cell death that enhances responses to ICIs. However, nontargeted elicitation of pyroptosis may induce systemic side effects and toxicity. Therefore, we reasonably design and construct a tumor-specific prodrug that combines the heat shock protein 90 inhibitor tanespimycin (17-AAG) with the photosensitizer chlorin e6 (Ce6) to induce pyroptosis, by utilizing the high glutathione level in the tumor microenvironment. The released Ce6 and 17-AAG produce reactive oxygen species by laser triggering, which induces gasdermin E-mediated pyroptosis. Furthermore, 17-AAG reduces myeloid-derived suppressor cells and sensitizes tumors to anti-programmed death-1 (PD-1) therapy. Thus, our prodrug strategy achieves tumor-targeted pyroptosis to suppress tumor growth, thereby improving the response to anti-PD-1 therapy and extending the survival of 4T1 breast tumor-bearing mice. Consequently, this pyroptosis-based prodrug represents a novel strategy for enforcing immunogenic photodynamic therapy.

Keywords: immunotherapy, photodynamic therapy, tumor microenvironment, heat shock proteins, pyroptosis

References(45)

1

Hiam-Galvez, K. J.; Allen, B. M.; Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 2021, 21, 345–359.

2

Meric-Bernstam, F.; Larkin, J.; Tabernero, J.; Bonini, C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet 2021, 397, 1010–1022.

3

Sharma, P.; Siddiqui, B. A.; Anandhan, S.; Yadav, S. S.; Subudhi, S. K.; Gao, J. J.; Goswami, S.; Allison, J. P. The next decade of immune checkpoint therapy. Cancer Discov. 2021, 11, 838–857.

4

Schoenfeld, A. J.; Hellmann, M. D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 2020, 37, 443–455.

5

Pérez-Ruiz, E.; Melero, I.; Kopecka, J.; Sarmento-Ribeiro, A. B.; García-Aranda, M. De Las Rivas, J. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies. Drug Resist. Updat. 2020, 53, 100718.

6

Ren, D. X.; Hua, Y. Z.; Yu, B. Y.; Ye, X.; He, Z. H.; Li, C. W.; Wang, J.; Mo, Y. Z.; Wei, X. X.; Chen, Y. H. et al. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol. Cancer 2020, 19, 19.

7

Neal, J. T.; Li, X. N.; Zhu, J. J.; Giangarra, V.; Grzeskowiak, C. L.; Ju, J. H.; Liu, I. H.; Chiou, S. H.; Salahudeen, A. A.; Smith, A. R. et al. Organoid modeling of the tumor immune microenvironment. Cell 2018, 175, 1972–1988.e16.

8

Kim, T. K.; Herbst, R. S.; Chen, L. P. Defining and understanding adaptive resistance in cancer immunotherapy. Trends Immunol. 2018, 39, 624–631.

9

Wang, C.; Wang, J. Q.; Zhang, X. D.; Yu, S. J.; Wen, D.; Hu, Q. Y.; Ye, Y. Q.; Bomba, H.; Hu, X. L.; Liu, Z. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 2018, 10, eaan3682.

10

Galluzzi, L.; López-Soto, A.; Kumar, S.; Kroemer, G. Caspases connect cell-death signaling to organismal homeostasis. Immunity 2016, 44, 221–231.

11

Kayagaki, N.; Stowe, I. B.; Lee, B. L.; O'Rourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q. T. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 2015, 526, 666–671.

12

Broz, P.; Pelegrín, P.; Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 2020, 20, 143–157.

13

Zhang, Z. B.; Zhang, Y.; Xia, S. Y.; Kong, Q.; Li, S. Y.; Liu, X.; Junqueira, C.; Meza-Sosa, K. F.; Mok, T. M. Y.; Ansara, J. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 2020, 579, 415–420.

14

Zhou, Z. W.; He, H. B.; Wang, K.; Shi, X. Y.; Wang, Y. P.; Su, Y.; Wang, Y.; Li, D.; Liu, W.; Zhang, Y. L. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 2020, 368, eaaz7548.

15

Wang, Q. Y.; Wang, Y. P.; Ding, J. J.; Wang, C. H.; Zhou, X. H.; Gao, W. Q.; Huang, H. W.; Shao, F.; Liu, Z. B. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 2020, 579, 421–426.

16

Shi, J. J.; Zhao, Y.; Wang, K.; Shi, X. Y.; Wang, Y.; Huang, H. W.; Zhuang, Y. H.; Cai, T.; Wang, F. C.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 2015, 526, 660–665.

17

Jackson, C. M.; Choi, J.; Lim, M. Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat. Immunol. 2019, 20, 1100–1109.

18

Tang, R.; Xu, J.; Zhang, B.; Liu, J.; Liang, C.; Hua, J.; Meng, Q. C.; Yu, X. J.; Shi, S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J. Hematol. Oncol. 2020, 13, 110.

19

Rosenbaum, S. R.; Wilski, N. A.; Aplin, A. E. Fueling the Fire: Inflammatory forms of cell death and implications for cancer immunotherapy. Cancer Discov. 2021, 11, 266–281.

20

Wang, Y. P.; Gao, W. Q.; Shi, X. Y.; Ding, J. J.; Liu, W.; He, H. B.; Wang, K.; Shao, F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 2017, 547, 99–103.

21

Zhou, B.; Zhang, J. Y.; Liu, X. S.; Chen, H. Z.; Ai, Y. L.; Cheng, K.; Sun, R. Y.; Zhou, D. W.; Han, J. H.; Wu, Q. Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res. 2018, 28, 1171–1185.

22

Rogers, C.; Erkes, D. A.; Nardone, A.; Aplin, A. E.; Fernandes-Alnemri, T.; Alnemri, E. S. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 2019, 10, 1689.

23

Wu, D.; Wang, S.; Yu, G. C.; Chen, X. Y. Cell death mediated by the pyroptosis pathway with the aid of nanotechnology: Prospects for cancer therapy. Angew. Chem., Int. Ed. 2021, 60, 8018–8034.

24

Shi, Y.; Lammers, T. Combining nanomedicine and immunotherapy. Acc. Chem. Res. 2019, 52, 1543–1554.

25

van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. J. M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017.

26

Zhu, X. J.; Li, J. F.; Peng, P.; Hosseini Nassab, N.; Smith, B. R. Quantitative drug release monitoring in tumors of living subjects by magnetic particle imaging nanocomposite. Nano Lett. 2019, 19, 6725–6733.

27

Phuengkham, H.; Ren, L.; Shin, I. W.; Lim, Y. T. Nanoengineered immune niches for reprogramming the immunosuppressive tumor microenvironment and enhancing cancer immunotherapy. Adv. Mater. 2019, 31, 1803322.

28

Yi, X.; Zhou, H. L.; Chao, Y.; Xiong, S. S.; Zhong, J.; Chai, Z. F.; Yang, K.; Liu, Z. Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer. Sci. Adv. 2020, 6, eaba3546.

29

Zhao, P. F.; Wang, M.; Chen, M.; Chen, Z.; Peng, X.; Zhou, F. F.; Song, J.; Qu, J. L. Programming cell pyroptosis with biomimetic nanoparticles for solid tumor immunotherapy. Biomaterials 2020, 254, 120142.

30

Huo, D.; Zhu, J. F.; Chen, G. J.; Chen, Q.; Zhang, C.; Luo, X. Y.; Jiang, W.; Jiang, X. Q.; Gu, Z.; Hu, Y. Eradication of unresectable liver metastasis through induction of tumour specific energy depletion. Nat. Commun. 2019, 10, 3051.

31

Zhang, H.; Li, H. Y.; Fan, H. Z.; Yan, J.; Meng, D. J.; Hou, S.; Ji, Y. L.; Wu, X. C. Formation of plasmon quenching dips greatly enhances 1O2 generation in a chlorin e6–gold nanorod coupled system. Nano Res. 2018, 11, 1456–1469.

32

Hu, X.; Tian, H. L.; Jiang, W.; Song, A. X.; Li, Z. H.; Luan, Y. X. Rational design of IR820- and Ce6-based versatile micelle for single NIR laser-induced imaging and dual-modal phototherapy. Small 2018, 14, 1802994.

33

Lamoureux, F.; Thomas, C.; Yin, M. J.; Kuruma, H.; Fazli, L.; Gleave, M. E.; Zoubeidi, A. A novel HSP90 inhibitor delays castrate-resistant prostate cancer without altering serum PSA levels and inhibits osteoclastogenesis. Clin. Cancer Res. 2011, 17, 2301–2313.

34

Wagatsuma, A.; Takayama, Y.; Hoshino, T.; Shiozuka, M.; Yamada, S.; Matsuda, R.; Mabuchi, K. Pharmacological targeting of HSP90 with 17-AAG induces apoptosis of myogenic cells through activation of the intrinsic pathway. Mol. Cell. Biochem. 2018, 445, 45–58.

35

Mitchell, C.; Park, M. A.; Zhang, G.; Han, S. I.; Harada, H.; Franklin, R. A.; Yacoub, A.; Li, P. L.; Hylemon, P. B.; Grant, S. et al. 17-Allylamino-17-demethoxygeldanamycin enhances the lethality of deoxycholic acid in primary rodent hepatocytes and established cell lines. Mol. Cancer Ther. 2007, 6, 618–632.

36

Mbofung, R. M.; McKenzie, J. A.; Malu, S.; Zhang, M.; Peng, W. Y.; Liu, C. W.; Kuiatse, I.; Tieu, T.; Williams, L.; Devi, S. et al. HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nat. Commun. 2017, 8, 451.

37

Liu, M. D.; Yu, Y.; Guo, D. K.; Wang, S. B.; Li, C. X.; Gao, F.; Zhang, C.; Xie, B. R.; Zhong, Z.; Zhang, X. Z. Integration of a porous coordination network and black phosphorus nanosheets for improved photodynamic therapy of tumor. Nanoscale 2020, 12, 8890–8897.

38
Ma, X. B.; Yang, S. C.; Zhang, T.; Wang, S.; Yang, Q. C.; Xiao, Y.; Shi, X. X.; Xue, P.; Kang, Y. J.; Liu, G. et al. Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharm. Sin. B, in press, https://doi.org/10.1016/j.apsb.2021.05.016.
39

Ma, X. B.; Zhang, T.; Qiu, W.; Liang, M. Y.; Gao, Y.; Xue, P.; Kang, Y. J.; Xu, Z. G. Bioresponsive prodrug nanogel-based polycondensate strategy deepens tumor penetration and potentiates oxidative stress. Chem. Eng. J. 2021, 420, 127657.

40

Wang, Z. Y.; Wu, V. H.; Allevato, M. M.; Gilardi, M.; He, Y. D.; Luis Callejas-Valera, J.; Vitale-Cross, L.; Martin, D.; Amornphimoltham, P.; McDermott, J. et al. Syngeneic animal models of tobacco-associated oral cancer reveal the activity of in situ anti-CTLA-4. Nat. Commun. 2019, 10, 5546.

41

Fang, J.; Islam, W.; Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020, 157, 142–160.

42

Golombek, S. K.; May, J. N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38.

43

Ling, X.; Tu, J. S.; Wang, J. Q.; Shajii, A.; Kong, N.; Feng, C.; Zhang, Y.; Yu, M.; Xie, T.; Bharwani, Z. et al. Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy. ACS Nano 2019, 13, 357–370.

44

He, K.; Zheng, X. N.; Zhang, L.; Yu, J. Hsp90 inhibitors promote p53-dependent apoptosis through PUMA and Bax. Mol. Cancer Ther. 2013, 12, 2559–2568.

45

Liu, Y.; Qiu, N. S.; Shen, L. M.; Liu, Q.; Zhang, J.; Cheng, Y. Y.; Lee, K. H.; Huang, L. Nanocarrier-mediated immunogenic chemotherapy for triple negative breast cancer. J. Control. Release 2020, 323, 431–441.

File
12274_2021_3946_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 August 2021
Revised: 18 October 2021
Accepted: 24 October 2021
Published: 15 December 2021
Issue date: April 2022

Copyright

©  Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 82072996 (Z.-J. S.), 81874131 (Z.-J. S.), and 51703187 (Z. X.)), National Key Research and Development Program (No. 2017YFSF090107), the Chongqing Talent Plan for Young TopNotch Talents (No. CQYC202005029 (Z. X.)), the Hubei Province Natural Science Funds for Distinguished Young Scholar (No. 2017CFA062 (Z.-J. S.)), and Innovative Research Team of High-level Local Universities in Shanghai (No. ZLCX20180500 (Z.-J. S.)).

Return