Journal Home > Volume 15 , Issue 4

Enhancing the selectivity of hydrocarbon in CO2 is a great challenge. Herein, taking widely-used and highly-stable TiO2 as an example, we found that the protonation step, the key step for CH4 production, can change from endoergic to exoergic by using red phosphorus quantum dots. Consequently, the main product in CO2 reduction can be shifted from CO into CH4. The preparation method is very simple, which just ultrasonically treating the red P in the presence of TiO2. With an initial rate of CH4 production of 4.69 μmol·g−1·h−1, under simulated solar light, it manifests a significant 49.4-fold enhancement of CH4 yield over TiO2. Density functional calculation indicates that the red P optimizes the surface electronic structure. The Gibbs free energy for CHO* formation (−1.12 eV) becomes lower than the desorption energy of the CO (−0.01 eV) when red P is introduced. This indicates that the CO intermediates on the surface are rapidly protonated to produce CHO*. Subsequently, the CHO* will be converted into CH4 instead of being desorbed from the surface to produce CO. This study demonstrates that red P quantum dot is a promising candidate for the development of efficient photocatalyst for CO2 photoreduction to CH4 under solar light irradiation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots

Show Author's information Yinglong LuMinghao LiuNingchao ZhengXi HeRuiting HuRuilin WangQuan ZhouZhuofeng Hu( )
School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Enhancing the selectivity of hydrocarbon in CO2 is a great challenge. Herein, taking widely-used and highly-stable TiO2 as an example, we found that the protonation step, the key step for CH4 production, can change from endoergic to exoergic by using red phosphorus quantum dots. Consequently, the main product in CO2 reduction can be shifted from CO into CH4. The preparation method is very simple, which just ultrasonically treating the red P in the presence of TiO2. With an initial rate of CH4 production of 4.69 μmol·g−1·h−1, under simulated solar light, it manifests a significant 49.4-fold enhancement of CH4 yield over TiO2. Density functional calculation indicates that the red P optimizes the surface electronic structure. The Gibbs free energy for CHO* formation (−1.12 eV) becomes lower than the desorption energy of the CO (−0.01 eV) when red P is introduced. This indicates that the CO intermediates on the surface are rapidly protonated to produce CHO*. Subsequently, the CHO* will be converted into CH4 instead of being desorbed from the surface to produce CO. This study demonstrates that red P quantum dot is a promising candidate for the development of efficient photocatalyst for CO2 photoreduction to CH4 under solar light irradiation.

Keywords: TiO2, red phosphorus, CO2 reduction , CH4

References(44)

1

Mori, K.; Yamashita, H.; Anpo, M. Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Adv. 2012, 2, 3165–3172.

2

Zhu, Z. Z.; Li, X. X.; Qu, Y. T.; Zhou, F. Y.; Wang, Z. Y.; Wang, W. Y.; Zhao, C. M.; Wang, H. J.; Li, L. Q.; Yao, Y. G. et al. A hierarchical heterostructure of CdS QDs confined on 3D ZnIn2S4 with boosted charge transfer for photocatalytic CO2 reduction. Nano Res. 2021, 14, 81–90.

3

Low, J. X.; Cheng, B.; Yu, J. G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658–686.

4

Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C: Photochem. Rev. 2015, 24, 16–42.

5

Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.

6

Woolerton, T. W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J. Am. Chem. Soc. 2010, 132, 2132–2133.

7

Zhu, Z.; Huang, W. R.; Chen, C. Y.; Wu, R. J. Preparation of Pd-Au/TiO2-WO3 to enhance photoreduction of CO2 to CH4 and CO. J. CO2 Util. 2018, 28, 247–254.

8

Singhal, N.; Ali, A.; Vorontsov, A.; Pendem, C.; Kumar, U. Efficient approach for simultaneous CO and H2 production via photoreduction of CO2 with water over copper nanoparticles loaded TiO2. Appl. Catal. A: Gen. 2016, 523, 107–117.

9

Han, A. G.; Li, M.; Zhang, S. B.; Zhu, X. L.; Han, J. Y.; Ge, Q. F.; Wang, H. Ti3+ defective SnS2/TiO2 heterojunction photocatalyst for visible-light driven reduction of CO2 to CO with high selectivity. Catalysts 2019, 9, 927.

10

Tahir, M.; Tahir, B.; Amin, N. A. S.; Zakaria, Z. Y. Photo-induced reduction of CO2 to CO with hydrogen over plasmonic Ag-NPs/TiO2 NWs core/shell hetero-junction under UV and visible light. J. CO2 Util. 2017, 18, 250–260.

11

Tahir, M. Synergistic effect in MMT-dispersed Au/TiO2 monolithic nanocatalyst for plasmon-absorption and metallic interband transitions dynamic CO2 photo-reduction to CO. Appl. Catal. B: Environ. 2017, 219, 329–343.

12

Tahir, M.; Amin, N. A. S. Photo-induced CO2 reduction by hydrogen for selective CO evolution in a dynamic monolith photoreactor loaded with Ag-modified TiO2 nanocatalyst. Int. J. Hydrog. Energy 2017, 42, 15507–15522.

13

Tahir, M.; Tahir, B.; Amin, N. A. S. Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Appl. Catal. B: Environ. 2017, 204, 548–560.

14
Xu, Y.; Fu, Z. C.; Fu, W. F.; Liu, S. Facile synthesis of Co@TiO2/C hybrid catalyst and its application to photocatalytic reduction of CO2 under visible-light irradiation. In Proceedings of 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering, Toronto, Canada, 2019, pp 166–171.https://doi.org/10.1109/REPE48501.2019.9025148
DOI
15

Chen, W. Y.; Liu, X. M.; Han, B.; Liang, S. J.; Deng, H.; Lin, Z. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. 2021, 14, 730–737.

16

Ulmer, U.; Dingle, T.; Duchesne, P. N.; Morris, R. H.; Tavasoli, A.; Wood, T.; Ozin, G. A. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 2019, 10, 3169.

17

Kim, N.; Nam, J. S.; Jo, J.; Seong, J.; Kim, H.; Kwon, Y.; Lah, M. S.; Lee, J. H.; Kwon, T. H.; Ryu, J. Selective photocatalytic production of CH4 using Zn-based polyoxometalate as a nonconventional CO2 reduction catalyst. Nanoscale Horiz. 2021, 6, 379–385.

18

Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

19

Zeng, L.; Xue, C. Single metal atom decorated photocatalysts: Progress and challenges. Nano Res. 2021, 14, 934–944.

20

Günther, S.; Grunert, M.; Müller, S. Overview of recent advances in phosphorus recovery for fertilizer production. Eng. Life Sci. 2018, 18, 434–439.

21

Hu, Z. F.; Lu, Y. L.; Liu, M. H.; Zhang, X. Y.; Cai, J. J. Crystalline red phosphorus for selective photocatalytic reduction of CO2 into CO. J. Mater. Chem. A 2021, 9, 338–348.

22

Li, L. J.; Hu, Z. F.; Yu, J. C. On-demand synthesis of H2O2 by water oxidation for sustainable resource production and organic pollutant degradation. Angew. Chem., Int. Ed. 2020, 59, 20538–20544.

23

Hu, Z. F.; Gong, J. B.; Ye, Z.; Liu, Y.; Xiao, X. D.; Yu, J. C. Cu(In,Ga)Se2 for selective and efficient photoelectrochemical conversion of CO2 into CO. J. Catal. 2020, 384, 88–95.

24

Hu, Z. F.; Liu, W. W. Conversion of biomasses and copper into catalysts for photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 51366–51373.

25

Lan, Y. C.; Niu, G. Q.; Wang, F.; Cui, D. H.; Hu, Z. F. SnO2-modified two-dimensional CuO for enhanced electrochemical reduction of CO2 to C2H4. ACS Appl. Mater. Interfaces 2020, 12, 36128–36136.

26

Bachhuber, F.; von, Appen J.; Dronskowski, R.; Schmidt, P.; Nilges, T.; Pfitzner, A.; Weihrich, R. Van der Waals interactions in selected allotropes of phosphorus. Z. Krist. Cryst. Mater. 2014, 230, 107–115.

27

Wang, K. L.; Wei, Z. S.; Ohtani, B.; Kowalska, E. Interparticle electron transfer in methanol dehydrogenation on platinum-loaded titania particles prepared from P25. Catal. Today 2018, 303, 327–333.

28

Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033.

29

Lazarus, M. S.; Sham, T. K. X-ray photoelectron spectroscopy (XPS) studies of hydrogen reduced rutile (TiO2−x) surfaces. Chem. Phys. Lett. 1982, 92, 670–674.

30

McCafferty, E.; Wightman, J. P. Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method. Surf. Interface Anal. 1998, 26, 549–564.

DOI
31

Hu, Z. F.; Yuan, L. Y.; Liu, Z. F.; Shen, Z. R.; Yu, J. C. An elemental phosphorus photocatalyst with a record high hydrogen evolution efficiency. Angew. Chem., Int. Ed. 2016, 55, 9580–9585.

32

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

33

Guo, C. X.; Dong, Y. Q.; Yang, H. B.; Li, C. M. Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. Adv. Energy Mater. 2013, 3, 997–1003.

34

Li, N.; Du, K.; Liu, G.; Xie, Y. P.; Zhou, G. M.; Zhu, J.; Li, F.; Cheng, H. M. Effects of oxygen vacancies on the electrochemical performance of tin oxide. J. Mater. Chem. A 2013, 1, 1536–1539.

35

Hu, Z. F.; Guo, W. Q. Fibrous phase red phosphorene as a new photocatalyst for carbon dioxide reduction and hydrogen evolution. Small 2021, 17, 2008004.

36

Mash, B. L.; Raghavan, A.; Ren, T. NiII complexes of C-substituted cyclam as efficient catalysts for reduction of CO2 to CO. Eur. J. Inorg. Chem. 2018, 2019, 2065–2070.

37

Melchionna, M.; Fornasiero, P. Updates on the roadmap for photocatalysis. ACS Catal. 2020, 10, 5493–5501.

38

Xia, Y.; Xiao, K.; Cheng, B.; Yu, J. G.; Jiang, L.; Antonietti, M.; Cao, S. W. Improving artificial photosynthesis over carbon nitride by gas−liquid−solid interface management for full light-induced CO2 reduction to C1 and C2 fuels and O2. ChemSusChem 2020, 13, 1730–1734.

39

Kim, J.; Monllor-Satoca, D.; Choi, W. Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energy Environ. Sci. 2012, 5, 7647–7656.

40

Monllor-Satoca, D.; Gómez, R.; Choi, W. Concentration-dependent photoredox conversion of As(III)/As(V) on illuminated titanium dioxide electrodes. Environ. Sci. Technol. 2012, 46, 5519–5527.

41

Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

42

Hu, Z. F.; Shen, Z. R.; Yu, J. C.; Cheng, F. Y. Intrinsic defect based homojunction: A novel quantum dots photoanode with enhanced charge transfer kinetics. Appl. Catal. B: Environ. 2017, 203, 829–838.

43

Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

44

Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S. Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 2016, 1, 16130.

File
12274_2021_3943_MOESM1_ESM.pdf (344.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 September 2021
Revised: 20 October 2021
Accepted: 20 October 2021
Published: 15 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51902357), the Natural Science Foundation of Guangdong Province, China (No. 2019A1515012143), the Start-up Funds for High-Level Talents of Sun Yat-sen University (No. 38000-18841209), the Fundamental Research Funds for the Central Universities (No. 19lgpy153) and the Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120058). The theoretical calculation is supported by the National supercomputer center in Guangzhou and the National supercomputing center in Shenzhen (Shenzhen cloud computing center).

Return