Journal Home > Volume 15 , Issue 4

The quest for solar-blind photodetectors with outstanding optoelectronic properties and weak signals detection capability is essential for their applications in the field of imaging, communication, warning, etc. To date, Ga2O3 has demonstrated potential for high-performance solar-blind photodetectors. However, the performance usually decays superlinearly at low light intensities due to carrier-trapping effect, which limits the weak signal detection capability of Ga2O3 photodetectors. Herein, a Ga2O3 solar-blind photodetector with ultra-thin absorbing medium has been designed to restrain trapping of photo-generated carriers during the transporting process by shortening the carrier transport distance. Meanwhile, multiple-beam interference is employed to enhance the absorption efficiency of the Ga2O3 layer using an Al/Al2O3/Ga2O3 structure. Based on the ultra-thin absorbing medium with enhanced absorption efficiency, a 7 × 7 flexible photodetector array is developed, and the detectivity can reach 1.7 × 1015 Jones, which is among the best values ever reported for Ga2O3 photodetectors. Notably, the performance of the photodetector decays little as the illumination intensity is as weak as 5 nW/cm2, revealing the capacity to detect ultra-weak signals. In addition, the flexible photodetector array can execute the functions of imaging, spatial distribution of light source intensity, real-time light trajectory detection, etc. Our results may provide a route to high-performance solar-blind photodetectors for ultra-weak light detection.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium

Show Author's information Yancheng ChenXun Yang( )Yuan Zhang( )Xuexia ChenJunlu SunZhiyang XuKaiyong LiLin DongChongxin Shan( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

Abstract

The quest for solar-blind photodetectors with outstanding optoelectronic properties and weak signals detection capability is essential for their applications in the field of imaging, communication, warning, etc. To date, Ga2O3 has demonstrated potential for high-performance solar-blind photodetectors. However, the performance usually decays superlinearly at low light intensities due to carrier-trapping effect, which limits the weak signal detection capability of Ga2O3 photodetectors. Herein, a Ga2O3 solar-blind photodetector with ultra-thin absorbing medium has been designed to restrain trapping of photo-generated carriers during the transporting process by shortening the carrier transport distance. Meanwhile, multiple-beam interference is employed to enhance the absorption efficiency of the Ga2O3 layer using an Al/Al2O3/Ga2O3 structure. Based on the ultra-thin absorbing medium with enhanced absorption efficiency, a 7 × 7 flexible photodetector array is developed, and the detectivity can reach 1.7 × 1015 Jones, which is among the best values ever reported for Ga2O3 photodetectors. Notably, the performance of the photodetector decays little as the illumination intensity is as weak as 5 nW/cm2, revealing the capacity to detect ultra-weak signals. In addition, the flexible photodetector array can execute the functions of imaging, spatial distribution of light source intensity, real-time light trajectory detection, etc. Our results may provide a route to high-performance solar-blind photodetectors for ultra-weak light detection.

Keywords: Ga2O3, solar-blind detection, ultra-thin absorbing medium, multiple-beam interference, flexible array

References(55)

1

Fan, P. Y.; Chettiar, U. K.; Cao, L. Y.; Afshinmanesh, F.; Engheta, N.; Brongersma, M. L. An invisible metal-semiconductor photodetector. Nat. Photonics 2012, 6, 380–385.

2

Jayachandran, D.; Oberoi, A.; Sebastian, A.; Choudhury, T. H.; Shankar, B.; Redwing, J. M.; Das, S. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 2020, 3, 646–655.

3

Wu, D.; Zhao, Z. H.; Lu, W.; Rogée, L.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D schottky junction with ultrafast speed. Nano Res. 2021, 14, 1973–1979.

4

Polat, E. O.; Mercier, G.; Nikitskiy, I.; Puma, E.; Galan, T.; Gupta, S.; Montagut, M.; Piqueras, J. J.; Bouwens, M.; Durduran, T. et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019, 5, 7846.

5

Zhang, D.; Zheng, W.; Lin, R. C.; Li, Y. Q.; Huang, F. Ultrahigh EQE (15%) solar-blind UV photovoltaic detector with organic–inorganic heterojunction via dual built-in fields enhanced photogenerated carrier separation efficiency mechanism. Adv. Funct. Mater. 2019, 29, 1900935.

6

Kong, W. Y.; Wu, G. A.; Wang, K. Y.; Zhang, T. F.; Zou, Y. F.; Wang, D. D.; Luo, L. B. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater. 2016, 28, 10725–10731.

7

Lin, C. N.; Lu, Y. J.; Tian, Y. Z.; Gao, C. J.; Fan, M. M.; Yang, X.; Dong, L.; Shan, C. X. Diamond based photodetectors for solar-blind communication. Opt. Express 2019, 27, 29962–29971.

8

Tang, X.; Ji, F. W.; Wang, H.; Jin, Z. J.; Li, H.; Li, B. K.; Wang, J. N. Temperature enhanced responsivity and speed in an AlGaN/GaN metal-heterostructure-metal photodetector. Appl. Phys. Lett. 2021, 119, 013503.

9

Duan, Y. H.; Zhang, S. Q.; Cong, M. Y.; Jiang, D. Y.; Li, Q. C.; Zhao, X. J. Performance modulation of a MgZnO/ZnO heterojunction flexible UV photodetector by the piezophototronic effect. J. Mater. Chem. C 2020, 8, 12917–12926.

10

Chikoidze, E.; Rogers, D. J.; Teherani, F. H.; Rubio, C.; Sauthier, G.; Von Bardeleben, H. J.; Tchelidze, T.; Ton-That, C.; Fellous, A.; Bove, P. et al. Puzzling robust 2D metallic conductivity in undoped β-Ga2O3 thin films. Mater. Today Phys. 2019, 8, 10–17.

11

Wu, Z. Y.; Jiang, Z. X.; Ma, C. C.; Ruan, W.; Chen, Y.; Zhang, H.; Zhang, G. Q.; Fang, Z. L.; Kang, J. Y.; Zhang, T. Y. Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films. Mater. Today Phys. 2021, 17, 100356.

12

Chen, Y. C.; Lu, Y. J.; Liao, M. Y.; Tian, Y. Z.; Liu, Q.; Gao, C. J.; Yang, X.; Shan, C. X. 3D solar-blind Ga2O3 photodetector array realized via origami method. Adv. Funct. Mater. 2019, 29, 1906040.

13

Nagarajan, L.; De Souza, R. A.; Samuelis, D.; Valov, I.; Börger, A.; Janek, J.; Becker, K. D.; Schmidt, P. C.; Martin, M. A chemically driven insulator-metal transition in non-stoichiometric and amorphous gallium oxide. Nat. Mater. 2008, 7, 391–398.

14

Wu, C.; He, C.; Guo, D.; Zhang, F.; Li, P.; Wang, S.; Liu, A.; Wu, F.; Tang, W. Vertical α/β-Ga2O3 phase junction nanorods array with graphene-silver nanowire hybrid conductive electrode for high-performance self-powered solar-blind photodetectors. Mater. Today Phys. 2020, 12, 100193.

15

Li, K. Y.; Yang, X.; Tian, Y. Z.; Chen, Y. C.; Lin, C. N.; Zhang, Z. F.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Ga2O3 solar-blind position-sensitive detectors. Sci. China Phys., Mech. Astron. 2020, 63, 117312.

16

Fang, Y. J.; Armin, A.; Meredith, P.; Huang, J. S. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 2019, 13, 1–4.

17

Liang, H. L.; Cui, S. J.; Su, R.; Guan, P. F.; He, Y. H.; Yang, L. H.; Chen, L. M.; Zhang, Y. H.; Mei, Z. X.; Du, X. L. Flexible X-ray detectors based on amorphous Ga2O3 thin films. ACS Photonics 2019, 6, 351–359.

18

Gao, Y.; Cansizoglu, H.; Polat, K. G.; Ghandiparsi, S.; Kaya, A.; Mamtaz, H. H.; Mayet, A. S.; Wang, Y. N.; Zhang, X. Z.; Yamada, T. et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics 2017, 11, 301–308.

19

Qiao, B. S.; Zhang, Z. Z.; Xie, X. H.; Li, B. H.; Li, K. X.; Chen, X.; Zhao, H. F.; Liu, K. W.; Liu, L.; Shen, D. Z. Avalanche gain in metal–semiconductor–metal Ga2O3 solar-blind photodiodes. J. Phys. Chem. C 2019, 123, 18516–18520.

20

Hu, W. D.; Li, Q.; Chen, X. S, Lu, W. Recent progress on advanced infrared photodetectors. Acta Phys. Sin. 2019, 68, 120701.

21

Lei, S. D.; Sobhani, A.; Wen, F. F.; George, A.; Wang, Q. Z.; Huang, Y. H.; Dong, P.; Li, B.; Najmaei, S.; Bellah, J. et al. Ternary CuIn7Se11: Towards ultra-thin layered photodetectors and photovoltaic devices. Adv. Mater. 2014, 26, 7666–7672.

22

Kats, M. A.; Blanchard, R.; Genevet, P.; Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 2013, 12, 20–24.

23

Lee, K. T.; Lee, J. Y.; Seo, S.; Guo, L. J. Colored ultrathin hybrid photovoltaics with high quantum efficiency. Light:Sci. Appl. 2014, 3, e215.

24

Kats, M. A.; Sharma, D.; Lin, J.; Genevet, P.; Blanchard, R.; Yang, Z.; Qazilbash, M. M.; Basov, D. N.; Ramanathan, S.; Capasso, F. Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 2012, 101, 221101.

25

Wu, Z. X.; Wang, J.; Liu, Y. J.; Hou, S. H.; Liu, X. J.; Zhang, Q.; Cao, F. A review of spectral controlling for renewable energy harvesting and conserving. Mater. Today Phys. 2021, 18, 100388.

26

Pak, S.; Lee, J.; Jang, A. R.; Kim, S.; Park, K. H.; Sohn, J. I.; Cha, S. Strain-engineering of contact energy barriers and photoresponse behaviors in monolayer MoS2 flexible devices. Adv. Funct. Mater. 2020, 30, 2002023.

27

Lai, J. Y.; Hasan, N.; Swinnich, E.; Tang, Z.; Shin, S. H.; Kim, M.; Zhang, P. H.; Seo, J. H. Flexible crystalline β-Ga2O3 solar-blind photodetectors. J. Mater. Chem. C 2020, 8, 14732–14739.

28

Wang, M.; Tian, W.; Cao, F. R.; Wang, M.; Li, L. Flexible and self-powered lateral photodetector based on inorganic perovskite CsPbI3-CsPbBr3 heterojunction nanowire array. Adv. Funct. Mater. 2020, 30, 1909771.

29

Fink, Y.; Winn, J. N.; Fan, S. H.; Chen, C. P.; Michel, J.; Joannopoulos, J. D.; Thomas, E. L. A dielectric omnidirectional reflector. Science 1998, 282, 1679–1682.

30

Dobrowolski, J. A. Versatile computer program for absorbing optical thin film systems. Appl. Opt. 1981, 20, 74–81.

31

Yan, R. H.; Simes, R. J.; Coldren, L. A. Electroabsorptive Fabry-Perot reflection modulators with asymmetric mirrors. IEEE Photonics Technol. Lett. 1989, 1, 273–275.

32

Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

33

Guo, R.; Su, J.; Yuan, H.; Zhang, P.; Lin, Z.; Zhang, J.; Chang, J.; Hao, Y. Surface functionalization modulates the structural and optoelectronic properties of two-dimensional Ga2O3. Mater. Today Phys. 2020, 12, 100192.

34

Hu, G. C.; Shan, C. X.; Zhang, N.; Jiang, M. M.; Wang, S. P.; Shen, D. Z. High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process. Opt. Express 2015, 23, 13554–13561.

35

Qin, Y.; Li, L. H.; Zhao, X. L.; Tompa, G. S.; Dong, H.; Jian, G. Z.; He, Q. M.; Tan, P. J.; Hou, X. H.; Zhang, Z. F. et al. Metal–semiconductor–metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics 2020, 7, 812–820.

36

Zhuo, R. R.; Zeng, L. H.; Yuan, H. Y.; Wu, D.; Wang, Y. G.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2019, 12, 183–189.

37

Zhou, H. T.; Cong, L. J.; Ma, J. G.; Li, B. S.; Chen, M. Z.; Xu, H. Y.; Liu, Y. C. High gain broadband photoconductor based on amorphous Ga2O3 and suppression of persistent photoconductivity. J. Mater. Chem. C 2019, 7, 13149–13155.

38

Chen, J. X.; Li, Z. L.; Ni, F. L.; Ouyang, W. X.; Fang, X. S. Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Mater. Horiz. 2020, 7, 1828–1833.

39

Li, Y.; Shi, Z. F.; Wang, L. T.; Chen, Y. C.; Liang, W. Q.; Wu, D.; Li, X. J.; Zhang, Y.; Shan, C. X.; Fang, X. S. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors. Mater. Horiz. 2020, 7, 1613–1622.

40

Chen, X. H.; Ren, F. F.; Ye, J. D.; Gu, S. L. Gallium oxide-based solar-blind ultraviolet photodetectors. Semicond. Sci. Technol. 2020, 35, 023001.

41

Katz, O.; Roichman, Y.; Bahir, G.; Tessler, N.; Salzman, J. Charge carrier mobility in field effect transistors: Analysis of capacitance–conductance measurements. Semicond. Sci. Technol. 2004, 20, 90–94.

42

Chen, Y. C.; Zhang, K. K.; Yang, X.; Chen, X. X.; Sun, J. L.; Zhao, Q.; Li, K. Y.; Shan, C. X. Solar-blind photodetectors based on Mxenes-β-Ga2O3 schottky junctions. J. Phys. D:Appl. Phys. 2020, 53, 484001.

43

Chen, Y. C.; Lu, Y. J.; Yang, X.; Li, S. F.; Li, K. Y.; Chen, X. X.; Xu, Z. Y.; Zang, J. H.; Shan, C. X. Bandgap engineering of gallium oxides by crystalline disorder. Mater. Today Phys 2021, 18, 100369.

44

Li, Y.; Shi, Z. F.; Liang, W. Q.; Ma, J. L.; Chen, X.; Wu, D.; Tian, Y. T.; Li, X. J.; Shan, C. X.; Fang, X. S. Recent advances toward environment-friendly photodetectors based on lead-free metal halide perovskites and perovskite derivatives. Mater. Horiz. 2021, 8, 1367–1389.

45

Li, S.; Yan, Z. Y.; Liu, Z.; Chen, J.; Zhi, Y. S.; Guo, D. Y.; Li, P. G.; Wu, Z. P.; Tang, W. H. A self-powered solar-blind photodetector with large Voc enhancing performance based on the PEDOT: PSS/Ga2O3 organic–inorganic hybrid heterojunction. J. Mater. Chem. C 2020, 8, 1292–1300.

46

Xu, X. Y.; Hu, J. G.; Yin, Z. Y.; Xu, C. X. Photoanode current of large-area MoS2 ultrathin nanosheets with vertically mesh-shaped structure on indium tin oxide. ACS Appl. Mater. Interfaces 2014, 6, 5983–5987.

47

Liu, Z.; Wang, X.; Liu, Y. Y.; Guo, D. Y.; Li, S.; Yan, Z. Y.; Tan, C. K.; Li, W. J.; Li, P. G.; Tang, W. H. A high-performance ultraviolet solar-blind photodetector based on a β-Ga2O3 schottky photodiode. J. Mater. Chem. C 2019, 7, 13920–13929.

48

Lin, R. C.; Zheng, W.; Zhang, D.; Zhang, Z. J.; Liao, Q. X.; Yang, L.; Huang, F. High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication. ACS Appl. Mater. Interfaces 2018, 10, 22419–22426.

49

Chen, X. H.; Xu, Y.; Zhou, D.; Yang, S.; Ren, F. F.; Lu, H.; Tang, K.; Gu, S. L.; Zhang, R.; Zheng Y. D. et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Appl. Mater. Interfaces 2017, 9, 36997–37005.

50

Hou, X. H.; Sun, H. D.; Long, S. B.; Tompa, G. S.; Salagaj, T.; Qin, Y.; Zhang, Z. F.; Tan, P. J.; Yu, S. J.; Liu, M. Ultrahigh-performance solar-blind photodetector based on α-phase-dominated Ga2O3 film with record low dark current of 81 fA. IEEE Electron Device Lett. 2019, 40, 1483–1486.

51

Kumar, N.; Arora, K.; Kumar, M. High performance, flexible and room temperature grown amorphous Ga2O3 solar-blind photodetector with amorphous indium-zinc-oxide transparent conducting electrodes. J. Phys. D:Appl. Phys. 2019, 52, 335103.

52

Tang, R. F.; Li, G. Q.; Li, C.; Li, J. C.; Zhang, Y. F.; Huang, K.; Ye, J. D.; Li, C.; Kang, J. Y.; Zhang, R. et al. Localized surface plasmon enhanced Ga2O3 solar blind photodetectors. Opt. Express 2020, 28, 5731–5740.

53

Liu, Z.; Li, S.; Yan, Z. Y.; Liu, Y. Y.; Zhi, Y. S.; Wang, X.; Wu, Z. P.; Li, P. G.; Tang, W. H. Construction of a β-Ga2O3-based metal-oxide-semiconductor-structured photodiode for high-performance dual-mode solar-blind detector applications. J. Mater. Chem. C 2020, 8, 5071–5081.

54

Dong, L. P.; Pang, T. Q.; Yu, J. G.; Wang, Y. C.; Zhu, W. G.; Zheng, H. D.; Yu, J. H.; Jia, R. X.; Chen, Z. Performance-enhanced solar-blind photodetector based on a CH3NH3PbI3/β-Ga2O3 hybrid structure. J. Mater. Chem. C 2019, 7, 14205–14211.

55

Qin, Y.; Long, S. B.; He, Q. M.; Dong, H.; Jian, G. Z.; Zhang, Y.; Hou, X. H.; Tan, P. J.; Zhang, Z. F.; Lu, Y. J. et al. Amorphous gallium oxide-based gate-tunable high-performance thin film phototransistor for solar-blind imaging. Adv. Electron. Mater. 2019, 5, 1900389.

File
12274_2021_3942_MOESM1_ESM.pdf (926.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 August 2021
Revised: 27 September 2021
Accepted: 19 October 2021
Published: 23 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFB0406500), the National Natural Science Foundation of China (Nos. 61804136, U1804155, and 62027816), and China Postdoctoral Science Foundation (Nos. 2018M630829 and 2019T120630).

Return