Journal Home > Volume 15 , Issue 4

Ammonia borane (AB) is regarded as a promising chemical hydrogen-storage material due to its high hydrogen content, non-toxicity, and long-term stability under ambient temperature. However, constructing advanced catalysts to further promote the hydrogen production still remains a challenge for the hydrolysis of AB. Herein, we report a novel oxygen modified CoP2 (O-CoP2) material with dispersed palladium nanoparticles (Pd NPs) as a highly efficient and sustainable catalyst for AB hydrolysis. The modification of oxygen could optimize the catalytic synergy effect between CoP2 and Pd NPs, achieving enhanced catalytic activity with a turnover frequency (TOF) number of 532 min−1 and an activation energy (Ea) value of 16.79 kJ·mol−1. Meanwhile, reaction kinetic experiments prove that the activation of water is the rate-determining step (RDS). The water activation mechanism is revealed by quasi in-situ X-ray photoelectron spectroscopy (XPS) and in-situ X-ray absorption fine structure (XAFS) measurements. The activation of water leads to the production of –H and –OH groups, which are further adsorbed on the oxygen atoms in P–O bond and Pd atoms, respectively. In addition, density functional theory (DFT) calculations indicate that the introduced oxygen facilitates the adsorption and activation of water molecules. This novel modulation strategy successfully sheds new light on the development of advanced catalysts for hydrolysis of AB and beyond.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Oxygen modified CoP2 supported palladium nanoparticles as highly efficient catalyst for hydrolysis of ammonia borane

Show Author's information Leijie Zhang1,§Jian Ye1,2,§Yi Tu1Qingyu Wang1Haibin Pan1Lihui Wu1Xusheng Zheng1( )Junfa Zhu1( )
National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
School of Science, Anhui Agricultural University, Hefei 230036, China

§ Leijie Zhang and Jian Ye contributed equally to this work.

Abstract

Ammonia borane (AB) is regarded as a promising chemical hydrogen-storage material due to its high hydrogen content, non-toxicity, and long-term stability under ambient temperature. However, constructing advanced catalysts to further promote the hydrogen production still remains a challenge for the hydrolysis of AB. Herein, we report a novel oxygen modified CoP2 (O-CoP2) material with dispersed palladium nanoparticles (Pd NPs) as a highly efficient and sustainable catalyst for AB hydrolysis. The modification of oxygen could optimize the catalytic synergy effect between CoP2 and Pd NPs, achieving enhanced catalytic activity with a turnover frequency (TOF) number of 532 min−1 and an activation energy (Ea) value of 16.79 kJ·mol−1. Meanwhile, reaction kinetic experiments prove that the activation of water is the rate-determining step (RDS). The water activation mechanism is revealed by quasi in-situ X-ray photoelectron spectroscopy (XPS) and in-situ X-ray absorption fine structure (XAFS) measurements. The activation of water leads to the production of –H and –OH groups, which are further adsorbed on the oxygen atoms in P–O bond and Pd atoms, respectively. In addition, density functional theory (DFT) calculations indicate that the introduced oxygen facilitates the adsorption and activation of water molecules. This novel modulation strategy successfully sheds new light on the development of advanced catalysts for hydrolysis of AB and beyond.

Keywords: density functional theory (DFT) calculations, Pd-based catalysis, ammonia borane hydrolysis, water activation, quasi in-situ X-ray photoelectron spectroscopy

References(54)

1

Valentini, F.; Kozell, V.; Petrucci, C.; Marrocchi, A.; Gu, Y. L.; Gelman, D.; Vaccaro, L. Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy Environ. Sci. 2019, 12, 2646–2664.

2

Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.

3

Yao, Q. L.; Lu, Z. H.; Yang, Y. W.; Chen, Y. Z.; Chen, X. S.; Jiang, H. L. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Res. 2018, 11, 4412–4422.

4

Yao, Q. L.; Yang, K.; Hong, X. L.; Chen, X. S.; Lu, Z. H. Base-promoted hydrolytic dehydrogenation of ammonia borane catalyzed by noble-metal-free nanoparticles. Catal. Sci. Technol. 2018, 8, 870–877.

5

Cui, L.; Xu, Y. H.; Niu, L.; Yang, W. R.; Liu, J. Q. Monolithically integrated CoP nanowire array: An on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH4 and NH3BH3. Nano Res. 2017, 10, 595–604.

6

Zhu, Y. Y.; Ouyang, L. Z.; Zhong, H.; Liu, J. W.; Wang, H.; Shao, H. Y.; Huang, Z. G.; Zhu, M. Closing the loop for hydrogen storage: Facile regeneration of NaBH4 from its hydrolytic product. Angew. Chem., Int. Ed. 2020, 59, 8623–8629.

7

Hu, X. P.; Liu, T.; Zhang, X. L.; Tian, J. Nitrogen-functionalized carbon nanotube-supported bimetallic PtNi nanoparticles for hydrogen generation from hydrous hydrazine. Chem. Commun. 2021, 57, 8324–8327.

8

Wang, K.; Yao, Q. L.; Qing, S. J.; Lu, Z. H. La(OH)3 nanosheet-supported CoPt nanoparticles: A highly efficient and magnetically recyclable catalyst for hydrogen production from hydrazine in aqueous solution. J. Mater. Chem. A 2019, 7, 9903–9911.

9

Zhong, S.; Tsumori, N.; Kitta, M.; Xu, Q. Immobilizing palladium nanoparticles on boron-oxygen-functionalized carbon nanospheres towards efficient hydrogen generation from formic acid. Nano Res. 2019, 12, 2966–2970.

10

Han, L.; Zhang, L. J.; Wu, H.; Zu, H. L.; Cui, P. X.; Guo, J. S.; Guo, R. H.; Ye, J.; Zhu, J. F.; Zheng, X. S. et al. Anchoring Pt single atoms on Te nanowires for plasmon-enhanced dehydrogenation of formic acid at room temperature. Adv. Sci. 2019, 6, 1900006.

11

Akbayrak, S.; Özkar, S. Ammonia borane as hydrogen storage materials. Int. J. Hydrogen Energy 2018, 43, 18592–18606.

12
Mboyi, C. D.; Poinsot, D.; Roger, J.; Fajerwerg, K.; Kahn, M. L.; Hierso, J. C. The hydrogen-storage challenge: Nanoparticles for metal-catalyzed ammonia borane dehydrogenation. Small, in press, https://doi.org/10.1002/smll.202102759.
13

Chen, W. Y.; Ji, J.; Duan, X. Z.; Qian, G.; Li, P.; Zhou, X. G.; Chen, D.; Yuan, W. K. Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. Chem. Commun. 2014, 50, 2142–2144.

14

Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rönnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: A double solvents approach. J. Am. Chem. Soc. 2012, 134, 13926–13929.

15

Akbayrak, S.; Tonbul, Y.; Özkar, S. Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane. Appl. Catal. B: Environ. 2016, 198, 162–170.

16

Yao, Q. L.; Lu, Z. H.; Jia, Y. S.; Chen, X. S.; Liu, X. In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis. Int. J. Hydrogen Energy 2015, 40, 2207–2215.

17

Dai, H. M.; Su, J.; Hu, K.; Luo, W.; Cheng, G. Z. Pd nanoparticles supported on MIL-101 as high-performance catalysts for catalytic hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2014, 39, 4947–4953.

18

Tonbul, Y.; Akbayrak, S.; Özkar, S. Palladium(0) nanoparticles supported on ceria: Highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane. Int. J. Hydrogen Energy 2016, 41, 11154–11162.

19

Zhou, Y. H.; Wang, S. Q.; Zhang, Z. Y.; Williams, N.; Cheng, Y.; Gu, J. Hollow nickel-cobalt layered double hydroxide supported palladium catalysts with superior hydrogen evolution activity for hydrolysis of ammonia borane. ChemCatChem 2018, 10, 3206–3213.

20

Manna, J.; Akbayrak, S.; Özkar, S. Palladium(0) nanoparticles supported on polydopamine coated CoFe2O4 as highly active, magnetically isolable and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane. Appl. Catal. B: Environ. 2017, 208, 104–115.

21

Wang, W.; Lu, Z. H.; Luo, Y.; Zou, A. H.; Yao, Q. L.; Chen, X. S. Mesoporous carbon nitride supported Pd and Pd-Ni nanoparticles as highly efficient catalyst for catalytic hydrolysis of NH3BH3. ChemCatChem 2018, 10, 1620–1626.

22

Xu, Q.; Chandra, M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. J. Power Sources 2006, 163, 364–370.

23

Kalidindi, S. B.; Sanyal, U.; Jagirdar, B. R. Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia-borane. Phys. Chem. Chem. Phys. 2008, 10, 5870–5874.

24

Li, Z.; He, T.; Liu, L.; Chen, W. D.; Zhang, M.; Wu, G. T.; Chen, P. Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: From mechanistic study to catalyst design. Chem. Sci. 2017, 8, 781–788.

25

Wang, C. L.; Tuninetti, J.; Wang, Z.; Zhang, C.; Ciganda, R.; Salmon, L.; Moya, S.; Ruiz, J.; Astruc, D. Hydrolysis of ammonia-borane over Ni/ZIF-8 nanocatalyst: High efficiency, mechanism, and controlled hydrogen release. J. Am. Chem. Soc. 2017, 139, 11610–11615.

26

Wang, L. B.; Li, H. L.; Zhang, W. B.; Zhao, X.; Qiu, J. X.; Li, A. W.; Zheng, X. S.; Hu, Z. P.; Si, R.; Zeng, J. Supported rhodium catalysts for ammonia-borane hydrolysis: Dependence of the catalytic activity on the highest occupied state of the single rhodium atoms. Angew. Chem., Int. Ed. 2017, 56, 4712–4718.

27

Xie, H. P.; Lan, C.; Chen, B.; Wang, F. H.; Liu, T. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays. Nano Res. 2020, 13, 3321–3329.

28

Read, C. G.; Callejas, J. F.; Holder, C. F.; Schaak, R. E. General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Appl. Mater. Interfaces 2016, 8, 12798–12803.

29

Wang, J. M.; Yang, W. R.; Liu, J. Q. CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 2016, 4, 4686–4690.

30

Cai, J. Y.; Song, Y.; Zang, Y. P.; Niu, S. W.; Wu, Y. S.; Xie, Y. F.; Zheng, X. S.; Liu, Y.; Lin, Y.; Liu, X. J. et al. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci. Adv. 2020, 6, eaaw8113.

31

Xu, K.; Ding, H.; Zhang, M. X.; Chen, M.; Hao, Z. K.; Zhang, L. D.; Wu, C. Z.; Xie, Y. Regulating water-reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution. Adv. Mater. 2017, 29, 1606980.

32

Chen, Z. Y.; Song, Y.; Cai, J. Y.; Zheng, X. S.; Han, D. D.; Wu, Y. S.; Zang, Y. P.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 5076–5080.

33

Feng, J. T.; Wang, H. Y.; Evans, D. G.; Duan, X.; Li, D. Q. Catalytic hydrogenation of ethylanthraquinone over highly dispersed eggshell Pd/SiO2-Al2O3 spherical catalysts. Appl. Catal. A: Gen. 2010, 382, 240–245.

34

Westaway, K. C. Determining transition state structure using kinetic isotope effects. J. Labelled Comp. Radiopharm. 2007, 50, 989–1005.

35

Van Nguyen, Q.; Frisbie, C. D. Hopping conductance in molecular wires exhibits a large heavy-atom kinetic isotope effect. J. Am. Chem. Soc. 2021, 143, 2638–2643.

36

Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 6710–6714.

37

Xiao, X. F.; He, C. T.; Zhao, S. L.; Li, J.; Lin, W. S.; Yuan, Z. K.; Zhang, Q.; Wang, S. Y.; Dai, L. M.; Yu, D. S. A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environ. Sci. 2017, 10, 893–899.

38

Wang, Y. F.; Zhang, C. B.; He, H. Insight into the role of Pd state on Pd-based catalysts in o-xylene oxidation at low temperature. ChemCatChem 2018, 10, 998–1004.

39

Zhang, Q.; Xu, J.; Yan, D. P.; Li, S. D.; Lu, J.; Cao, X. Z.; Wang, B. Y. The in situ shape-controlled synthesis and structure–activity relationship of Pd nanocrystalcatalysts supported on layered double hydroxide. Catal. Sci. Technol. 2013, 3, 2016–2024.

40

Wang, Y. Q.; Sherwood, P. M. A. Phosphorus pentoxide (P2O5) by XPS. Surf. Sci. Spectra 2002, 9, 159–165.

41

Atuchin, V. V.; Kesler, V. G.; Pervukhina, N. V. Electronic and structural parameters of phosphorus–oxygen bonds in inorganic phosphate crystals. Surf. Rev. Lett. 2008, 15, 391–399.

42

Li, J. C.; Li, M.; Li, J.; Wang, S.; Li, G. B.; Liu, X. Hydrodechlorination and deep hydrogenation on single-palladium-atom-based heterogeneous catalysts. Appl. Catal. B: Environ. 2021, 282, 119518.

43

Peuckert M. XPS investigation of surface oxidation layers on a platinum electrode in alkaline solution. Electrochimica Acta 1984, 29, 1315–1320.

44

Al-Azri, Z. H. N.; Jovic, V.; Chen, W. T.; Sun-Waterhouse, D.; Metson, J. B.; Waterhouse, G. I. N. Performance evaluation of Pd/TiO2 and Pt/TiO2 photocatalysts for hydrogen production from ethanol-water mixtures. Int. J. Nanotechnol. 2014, 11, 695–703.

45

Feng, K.; Zhong, J.; Zhao, B. H.; Zhang, H.; Xu, L.; Sun, X. H.; Lee, S. T. CuxCo1–xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia-borane. Angew. Chem., Int. Ed. 2016, 55, 11950–11954.

46

Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

47

Davis, R. J.; Landry, S. M.; Horsley, J. A.; Boudart, M. X-ray-absorption study of the interaction of hydrogen with clusters of supported palladium. Phys. Rev. B 1989, 39, 10580–10583.

48

Jiang, L. Z.; Liu, K. L.; Hung, S. F.; Zhou, L. Y.; Qin, R. X.; Zhang, Q. H.; Liu, P. X.; Gu, L.; Chen, H. M.; Fu, G. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 2020, 15, 848–853.

49

Peng, C. Y.; Kang, L.; Cao, S.; Chen, Y.; Lin, Z. S.; Fu, W. F. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew. Chem., Int. Ed. 2015, 54, 15725–15729.

50

Wang, Q.; Fu, F. Y.; Yang, S.; Moro, M. M.; De Los Angeles Ramirez, M.; Moya, S.; Salmon, L.; Ruiz, J.; Astruc, D. Dramatic synergy in CoPt nanocatalysts stabilized by “Click” dendrimers for evolution of hydrogen from hydrolysis of ammonia borane. ACS Catal. 2019, 9, 1110–1119.

51

Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.

52

Akbayrak, S.; Kaya, M.; Volkan, M.; Özkar, S. Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: A highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane. Appl. Catal. B: Environ. 2014, 147, 387–393.

53

Wang, J.; Qin, Y. L.; Liu, X.; Zhang, X. B. In situ synthesis of magnetically recyclable graphene-supported Pd@Co core–shell nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. J. Mater. Chem. 2012, 22, 12468–12470.

54

Wang, Q.; Liu, Z. Q.; Wang, W.; Liu, D. M.; Shi, W. X.; He, J. J.; Shao, P. H.; Shi, R. S.; Cui, F. Y. Nanostructured palladium/polypyrrole composite paper for enhanced catalytic hydrogen generation from ammonia borane. Int. J. Hydrogen Energy 2016, 41, 8470–8478.

File
12274_2021_3941_MOESM1_ESM.pdf (836 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 August 2021
Revised: 29 September 2021
Accepted: 18 October 2021
Published: 09 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors thank Prof. Jafu Chen and Dr. Yu Bai for help in structure and morphology characterization. The authors also appreciate the beamline BL14W1 in SSRF, BL10B, and BL11U in NSRL for synchrotron radiation measurements. The calculations were conducted on the supercomputing system in the Supercomputing Center of USTC. This work was financially supported by the National Key Research & Development Program of China (Nos. 2017YFA0700104, 2017YFA0403402, 2017YFA0403403, and 2019YFA0405601), the National Natural Science Foundation of China (Nos. 11875258, U1932213, U1932148, 21773222, 21872131, U1732272, U1832218, and U1932214), the Key Program of Research and Development of Hefei Science Center of Chinese Academy of Science (No. 2017HSC-KPRD001), the Fundamental Research Funds for the Central Universities (No. WK2060000016), Collaborative Innovation Program of Hefei Science Center, Chinese Academy of Science (No. 2019HSC-CIP009), Users with Excellence Program of Hefei Science Center, Chinese Academy of Science (Nos. 2018HSC-UE003 and 2019HSC-UE004), and the Youth Innovation Promotion Association, Chinese Academy of Science (No. 2020454).

Return