Journal Home > Volume 15 , issue 4

Cluster-based functional materials have made remarkable progress owing to their wonderful structures and distinctive physicochemical performances, one of on-going advancements of which is basically driven by synthetic chemistry of exploring and constructing novel nanosized gigantic polyoxometalate (POM) aggregates. In this article, an unprecedented nanoscale hexameric arsenotungstate aggregate Na9K16H4[Er0.5K0.5(H2O)7][Er5W10O26(H2O)14][B-α -AsW9O33]6·102H2O (1) has been synthesized by the combined synthetic strategy of simultaneously using the arsenotungstate precursor and simple tungstate material in a highly acidic aqueous solution. The {[Er5W10O26(H2O)14][B-α-AsW9O33]6}31− polyanion in 1 consists of an intriguing dumbbell-shaped pentadeca-nuclear W–Er heterometal {Er5W10O26(H2O)14}23+ cluster connecting six trilacunary [B-α-AsW9O33]9− moieties, which has never been seen previously. Furthermore, through electropolymerization of 1 and pyrrole on the conductive substrate, a thickness-controllable and robust 1–PPY (PPY = polypyrrole) hybrid film was successfully prepared, which represents the first POM–PPY film assembled from high-nuclear lanthanide (Ln) encapsulated POM and PPY hitherto. The 1–PPY film-based electrochemical biosensor exhibits a favorable recognition performance for ochratoxin A in multiple media. This work not only provides a feasible combined synthetic strategy of the POM precursor and simple tungstate material for constructing complicated multi-Ln-inserted POM aggregates, but also offers a promising electrochemical platform constructed from POM-based conductive films for identifying trace biomolecules in complex environments.

File
12274_2021_3940_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 August 2021
Revised: 29 September 2021
Accepted: 18 October 2021
Published: 22 November 2021
Issue date: September 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21871077, 21671054, 21771052, 22071042, 22171070, 91122028, and 21831001) and the Program for Innovation Teams in Science and Technology in Universities of Henan Province (No. 20IRTSTHN004).

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return