Journal Home > Volume 15 , Issue 4

Cluster-based functional materials have made remarkable progress owing to their wonderful structures and distinctive physicochemical performances, one of on-going advancements of which is basically driven by synthetic chemistry of exploring and constructing novel nanosized gigantic polyoxometalate (POM) aggregates. In this article, an unprecedented nanoscale hexameric arsenotungstate aggregate Na9K16H4[Er0.5K0.5(H2O)7][Er5W10O26(H2O)14][B-α-AsW9O33]6·102H2O (1) has been synthesized by the combined synthetic strategy of simultaneously using the arsenotungstate precursor and simple tungstate material in a highly acidic aqueous solution. The {[Er5W10O26(H2O)14][B-α-AsW9O33]6}31− polyanion in 1 consists of an intriguing dumbbell-shaped pentadeca-nuclear W–Er heterometal {Er5W10O26(H2O)14}23+ cluster connecting six trilacunary [B-α-AsW9O33]9− moieties, which has never been seen previously. Furthermore, through electropolymerization of 1 and pyrrole on the conductive substrate, a thickness-controllable and robust 1–PPY (PPY = polypyrrole) hybrid film was successfully prepared, which represents the first POM–PPY film assembled from high-nuclear lanthanide (Ln) encapsulated POM and PPY hitherto. The 1–PPY film-based electrochemical biosensor exhibits a favorable recognition performance for ochratoxin A in multiple media. This work not only provides a feasible combined synthetic strategy of the POM precursor and simple tungstate material for constructing complicated multi-Ln-inserted POM aggregates, but also offers a promising electrochemical platform constructed from POM-based conductive films for identifying trace biomolecules in complex environments.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An unprecedented dumbbell-shaped pentadeca-nuclear W–Er heterometal cluster stabilizing nanoscale hexameric arsenotungstate aggregate and electrochemical sensing properties of its conductive hybrid film-modified electrode

Show Author's information Dan Wang1,§Jun Jiang1,§Meng-Ya Cao1Sai-Sai Xie1Ya-Min Li1Li-Juan Chen1 ( )Jun-Wei Zhao1 ( )Guo-Yu Yang2( )
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

§ Dan Wang and Jun Jiang contributed equally to this work.

Abstract

Cluster-based functional materials have made remarkable progress owing to their wonderful structures and distinctive physicochemical performances, one of on-going advancements of which is basically driven by synthetic chemistry of exploring and constructing novel nanosized gigantic polyoxometalate (POM) aggregates. In this article, an unprecedented nanoscale hexameric arsenotungstate aggregate Na9K16H4[Er0.5K0.5(H2O)7][Er5W10O26(H2O)14][B-α-AsW9O33]6·102H2O (1) has been synthesized by the combined synthetic strategy of simultaneously using the arsenotungstate precursor and simple tungstate material in a highly acidic aqueous solution. The {[Er5W10O26(H2O)14][B-α-AsW9O33]6}31− polyanion in 1 consists of an intriguing dumbbell-shaped pentadeca-nuclear W–Er heterometal {Er5W10O26(H2O)14}23+ cluster connecting six trilacunary [B-α-AsW9O33]9− moieties, which has never been seen previously. Furthermore, through electropolymerization of 1 and pyrrole on the conductive substrate, a thickness-controllable and robust 1–PPY (PPY = polypyrrole) hybrid film was successfully prepared, which represents the first POM–PPY film assembled from high-nuclear lanthanide (Ln) encapsulated POM and PPY hitherto. The 1–PPY film-based electrochemical biosensor exhibits a favorable recognition performance for ochratoxin A in multiple media. This work not only provides a feasible combined synthetic strategy of the POM precursor and simple tungstate material for constructing complicated multi-Ln-inserted POM aggregates, but also offers a promising electrochemical platform constructed from POM-based conductive films for identifying trace biomolecules in complex environments.

Keywords: polyoxometalate, lanthanide-inserted arsenotungstate, polyoxometalate-based conductive film

References(76)

1

Tsukamoto, T.; Kambe, T.; Imaoka, T.; Yamamoto, K. Modern cluster design based on experiment and theory. Nat. Rev. Chem. 2021, 5, 338–347.

2

Peters, B.; Lichtenberger, N.; Dornsiepen, E.; Dehnen, S. Current advances in tin cluster chemistry. Chem. Sci. 2020, 11, 16–26.

3

Yan, J. Z.; Malola, S.; Hu, C. Y.; Peng, J.; Dittrich, B.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells. Nat. Commun. 2018, 9, 3357.

4

Devi, T.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Metal ion-coupled electron-transfer reactions of metal-oxygen complexes. Coord. Chem. Rev. 2020, 410, 213219.

5

Anyushin, A. V.; Kondinski, A.; Parac-Vogt, T. N. Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications. Chem. Soc. Rev. 2020, 49, 382–432.

6
Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res., in press, https://doi.org/10.1007/s12274-021-3843-8.
7

Li, M. F.; Zhang, B.; Cheng, T.; Yu, S.; Louisia, S.; Chen, C. B.; Chen, S. P.; Cestellos-Blanco, S.; Goddard III, W. A.; Yang, P. D. Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Res. 2021, 14, 3509–3513.

8

Wang, J.; Wang, Z. Y.; Li, S. J.; Zang, S. Q.; Mak, T. C. W. Carboranealkynyl-protected gold nanoclusters: Size conversion and UV–Vis–NIR optical properties. Angew. Chem., Int. Ed. 2021, 60, 5959–5964.

9

Colliard, I.; Nyman, M. CeIV70 oxosulfate rings, frameworks, supramolecular assembly, and redox activity. Angew. Chem., Int. Ed. 2021, 60, 7308–7315.

10

Wang, D.; Liu, L. L.; Jiang, J.; Chen, L. J.; Zhao, J. W. Polyoxometalate-based composite materials in electrochemistry: State-of-the-art progress and future outlook. Nanoscale 2020, 12, 5705–5718.

11

Ueda, T. Electrochemistry of polyoxometalates: From fundamental aspects to applications. ChemElectroChem 2018, 5, 823–838.

12

Wang, T.; Ji, T.; Chen, W. L.; Li, X. H.; Guan, W.; Geng, Y.; Wang, X. L.; Li, Y. G.; Kang, Z. H. Polyoxometalate film simultaneously converts multiple low-value all-weather environmental energy to electricity. Nano Energy 2020, 68, 104349.

13

Benseghir, Y.; Lemarchand, A.; Duguet, M.; Mialane, P.; Gomez-Mingot, M.; Roch-Marchal, C.; Pino, T.; Ha-Thi, M. H.; Haouas, M.; Fontecave, M. et al. Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework: In depth structural characterization and photocatalytic properties for CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9428–9438.

14

Yu, B.; Zhang, S. M.; Wang, X. Helical microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene. Angew. Chem., Int. Ed. 2021, 60, 17404–17409.

15

Wang, J. B.; Chen, W. L.; Wang, T.; Bate, N.; Wang, C. L.; Wang, E. B. A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion-exchange resin synthesis for efficient electrocatalytic hydrogen reduction. Nano Res. 2018, 11, 4535–4548.

16

Bayaguud, A.; Chen, K.; Wei, Y. G. Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Res. 2016, 9, 3858–3867.

17

Liu, J. C.; Wang, J. F.; Han, Q.; Shangguan, P.; Liu, L. L.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew. Chem., Int. Ed. 2021, 60, 11153–11157.

18

Wang, J. G.; Tao, Z. C.; Tian, T.; Qiu, J.; Qian, H. S.; Zha, Z. B.; Miao, Z. H.; Ma, Y.; Wang, H. Polyoxometalate nanoclusters: A potential preventative and therapeutic drug for inflammatory bowel disease. Chem. Eng. J. 2021, 416, 129137.

19

Zong, L. Y.; Wu, H. X.; Lin, H.; Chen, Y. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018, 11, 4149–4168.

20

Jordan, J. W.; Lowe, G. A.; McSweeney, R. L.; Stoppiello, C. T.; Lodge, R. W.; Skowron, S. T.; Biskupek, J.; Rance, G. A.; Kaiser, U.; Walsh, D. A. et al. Host-guest hybrid redox materials self-assembled from polyoxometalates and single-walled carbon nanotubes. Adv. Mater. 2019, 31, 1904182.

21

Gobbo, P.; Tian, L. F.; Kumar, B. V. V. S. P.; Turvey, S.; Cattelan, M.; Patil, A. J.; Carraro, M.; Bonchio, M.; Mann, S. Catalytic processing in ruthenium-based polyoxometalate coacervate protocells. Nat. Commun. 2020, 11, 41.

22

He, P.; Chen, W. L.; Li, J. P.; Zhang, H.; Li, Y. W.; Wang, E. B. Keggin and Dawson polyoxometalates as electrodes for flexible and transparent piezoelectric nanogenerators to efficiently utilize mechanical energy in the environment. Sci. Bull. 2020, 65, 35–44.

23

Li, X. X.; Zhao, D.; Zheng, S. T. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord. Chem. Rev. 2019, 397, 220–240.

24

Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem., Int. Ed. 2019, 58, 2980–2999.

25

Stuckart, M.; Monakhov, K. Y. Polyoxometalates as components of supramolecular assemblies. Chem. Sci. 2019, 10, 4364–4376.

26

Wang, D.; Li, Y. M.; Zhang, Y.; Xu, X.; Liu, Y.; Chen, L. J.; Zhao, J. W. Construction of Ln3+-substituted arsenotungstates modified by 2, 5-thiophenedicarboxylic acid and application in selective fluorescence detection of Ba2+ in aqueous solution. Inorg. Chem. 2020, 59, 6839–6848.

27

Liu, J. C.; Han, Q.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Aggregation of giant cerium-bismuth tungstate clusters into a 3D porous framework with high proton conductivity. Angew. Chem., Int. Ed. 2018, 57, 8416–8420.

28

Ibrahim, M.; Mereacre, V.; Leblanc, N.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Self-assembly of a giant tetrahedral 3d-4f single-molecule magnet within a polyoxometalate system. Angew. Chem., Int. Ed. 2015, 54, 15574–15578.

29

Li, H. L.; Lian, C.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Two unusual nanosized Nd3+-substituted selenotungstate aggregates simultaneously comprising lacunary Keggin and Dawson polyoxotungstate segments. Nanoscale 2020, 12, 16091–16101.

30

Wassermann, K.; Dickman, M. H.; Pope, M. T. Self-assembly of supramolecular polyoxometalates: The compact, water-soluble heteropolytungstate anion [AsIII12CeIII16(H2O)36W148O524]76−. Angew. Chem., Int. Ed. 1997, 36, 1445–1448.

31

Hussain, F.; Conrad, F.; Patzke, G. R. A gadolinium-bridged polytungstoarsenate(III) nanocluster: [Gd8As12W124O432(H2O)22]60−. Angew. Chem., Int. Ed. 2009, 48, 9088–9091.

32

Hussain, F.; Gable, R. W.; Speldrich, M.; Kögerler, P.; Boskovic, C. Polyoxotungstate-encapsulated Gd6 and Yb10 complexes. Chem. Commun. 2009, 328–330.

33

Zhao, J. W.; Li, H. L.; Ma, X.; Xie, Z. G.; Chen, L. J.; Zhu, Y. S. Lanthanide-connecting and lone-electron-pair active trigonal-pyramidal-AsO3 inducing nanosized poly(polyoxotungstate) aggregates and their anticancer activities. Sci. Rep. 2016, 6, 26406.

34

Xiong, J.; Yang, Z. X.; Ma, P. T.; Lin, D. M.; Zheng, Q. J.; Huo, Y. pH-controlled assembly of two polynuclear Dy(III)-containing polytungstoarsenates with magnetic and luminescence properties. Inorg. Chem. 2021, 60, 7519–7526.

35

Ritchie, C.; Moore, E. G.; Speldrich, M.; Kögerler, P.; Boskovic, C. Terbium polyoxometalate organic complexes: Correlation of structure with luminescence properties. Angew. Chem., Int. Ed. 2010, 49, 7702–7705.

36

Wassermann, K.; Pope, M. T. Large cluster formation through multiple substitution with lanthanide cations (La, Ce, Nd, Sm, Eu, and Gd) of the polyoxoanion [(B-α-AsO3W9O30)4(WO2)4]28−. Synthesis and structural characterization. Inorg. Chem. 2001, 40, 2763–2768.

37

Marrot, J.; Pilette, M. A.; Haouas, M.; Floquet, S.; Taulelle, F.; López, X.; Poblet, J. M.; Cadot, E. Polyoxometalates paneling through {Mo2O2S2} coordination: Cation-directed conformations and chemistry of a supramolecular hexameric scaffold. J. Am. Chem. Soc. 2012, 134, 1724–1737.

38

Han, Q. X.; Sun, X. P.; Li, J.; Ma, P. T.; Niu, J. Y. Beat over the old ground with new strategy: Engineering As···As interaction in arsenite-based dawson cluster β-[W18O54(AsO3)2]6−. Inorg. Chem. 2014, 53, 2006–2011.

39

Huo, Y.; Huo, Z. Y.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Polyoxotungstate incorporating organotriphosphonate ligands: Synthesis, characterization, and catalytic for alkene epoxidation. Inorg. Chem. 2015, 54, 406–408.

40

Miao, J.; Chen, Y. L.; Li, Y. W.; Cheng, J. J.; Wu, Q. Y.; Ng, K. W.; Cheng, X.; Chen, R.; Cheng, C.; Tang, Z. K. Proton conducting polyoxometalate/polypyrrole films and their humidity sensing performance. ACS Appl. Nano Mater. 2018, 1, 564–571.

41

Li, Q. Y.; Zhang, L.; Dai, J. L.; Tang, H.; Li, Q.; Xue, H. G.; Pang, H. Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chem. Eng. J. 2018, 351, 441–461.

42

Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

43

Wang, S.-M.; Kim, Y.; Kim, B.; Han, M.; Kim, E. Ultrathin polyoxometalate coating as the redox shuttle for acid-free electrochromic polymer capacitive windows. Adv. Funct. Mater. 2019, 29, 1806590.

44

Wang, S. M.; Wang, Y. H.; Wang, T.; Han, Z. B.; Cho, C.; Kim, E. Charge-balancing redox mediators for high color contrast electrochromism on polyoxometalates. Adv. Mater. Technol. 2020, 5, 2000326.

45

Cheng, N.; Chen, Y.; Zhang, Y.; Liu, Y. Cucurbit[7]uril-mediated 2D single-layer hybrid frameworks assembled by tetraphenylethene and polyoxometalate toward modulation of the α-chymotrypsin activity. ACS Appl. Mater. Interfaces 2020, 12, 15615–15621.

46

Yang, M. H.; Hong, S. B.; Yoon, J. H.; Kim, D. S.; Jeong, S. W.; Yoo, D. E.; Lee, T. J.; Lee, K. G.; Lee, S. J.; Choi, B. G. Fabrication of flexible, redoxable, and conductive nanopillar arrays with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 22220–22226.

47

Zhang, X. P.; Ye, T. Y.; Meng, X. H.; Tian, Z. H.; Pang, L. H.; Han, Y. J.; Li, H.; Lu, G.; Xiu, F.; Yu, H. D. et al. Sustainable and transparent fish gelatin films for flexible electroluminescent devices. ACS Nano 2020, 14, 3876–3884.

48

Li, D. H.; Wang, L.; Ji, W. H.; Wang, H. C.; Yue, X. P.; Sun, Q. Z.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G. et al. Embedding silver nanowires into a hydroxypropyl methyl cellulose film for flexible electrochromic devices with high electromechanical stability. ACS Appl. Mater. Interfaces 2021, 13, 1735–1742.

49

Zhang, Q.; Peng, B.; Zhao, Y. N.; Li, C. L.; Zhu, S. K.; Shi, K. Q.; Zhou, Z. Y.; Zhang, X. H.; Liu, M.; Pan, J. Y. Flexible CoFeB/silk films for biocompatible RF/microwave applications. ACS Appl. Mater. Interfaces 2020, 12, 51654–51661.

50

Zhang, C. C.; Wu, J. X.; Sun, Y. W.; Tan, C. W.; Li, T. R.; Tu, T.; Zhang, Y. C.; Liang, Y.; Zhou, X. H.; Gao, P. et al. High-mobility flexible oxyselenide thin-film transistors prepared by a solution-assisted method. J. Am. Chem. Soc. 2020, 142, 2726–2731.

51

Pramanik, S. K.; Suzuki, H. Switchable microvalves employing a conducting polymer and their automatic operation in conjunction with micropumps with a superabsorbent polymer. ACS Appl. Mater. Interfaces 2020, 12, 37741–37749.

52

Yin, S. X.; Lu, W. T.; Wu, X; Luo, Q. Y.; Wang, E. Q.; Guo, C. Y. Enhancing thermoelectric performance of polyaniline/single-walled carbon nanotube composites via dimethyl sulfoxide-mediated electropolymerization. ACS Appl. Mater. Interfaces 2021, 13, 3930–3936.

53

Yin, S. X.; Lu, W. T.; Wu, R. K.; Fan, W. S.; Guo, C. Y.; Chen, G. M. Poly(3, 4-ethylenedioxythiophene)/Te/single-walled carbon nanotube composites with high thermoelectric performance promoted by electropolymerization. ACS Appl. Mater. Interfaces 2020, 12, 3547–3553.

54

Liu, H. Q.; Wang, Y.; Mo, W. Q.; Tang, H. L.; Cheng, Z. Y.; Chen, Y.; Zhang, S. T.; Ma, H. W.; Li, B.; Li, X. B. Dendrimer-based, high-luminescence conjugated microporous polymer films for highly sensitive and selective volatile organic compound sensor arrays. Adv. Funct. Mater. 2020, 30, 1910275.

55

Kim, J. H.; Seong, T. Y.; Ahn, K. J.; Chung, K. B.; Seok, H. J.; Seo, H. J.; Kim, H. K. The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films. Appl. Surf. Sci. 2018, 440, 1211–1218.

56

Qi, G. J.; Wu, Z. L.; Wang, H. L. Highly conductive and semitransparent free-standing polypyrrole films prepared by chemical interfacial polymerization. J. Mater. Chem. C 2013, 1, 7102–7110.

57

Ratsch, M.; Ye, C.; Yang, Y. Z.; Zhang, A. R.; Evans, A. M.; Börjesson, K. All-carbon-linked continuous three-dimensional porous aromatic framework films with nanometer-precise controllable thickness. J. Am. Chem. Soc. 2020, 142, 6548–6553.

58

Li, C. G.; Wang, Y. S.; Zou, Y.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Two-dimensional conjugated polymer synthesized by interfacial suzuki reaction: Towards electronic device applications. Angew. Chem., Int. Ed. 2020, 59, 9403–9407.

59

Yin, Z. X.; Cho, S.; You, D. J.; Ahn, Y. K.; Yoo, J.; Kim, Y. S. Copper nanowire/multi-walled carbon nanotube composites as all-nanowire flexible electrode for fast-charging/discharging lithium-ion battery. Nano Res. 2018, 11, 769–779.

60

Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2021, 14, 1609–1624.

61

Bharti, M.; Jha, P.; Singh, A.; Chauhan, A. K.; Misra, S.; Yamazoe, M.; Debnath, A. K.; Marumoto, K.; Muthe, K. P.; Aswal, D. K. Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generator. Energy 2019, 176, 853–860.

62

Singh, A.; Salmi, Z.; Jha, P.; Joshi, N.; Kumar, A.; Decorse, P.; Lecoq, H.; Lau-Truong, S.; Aswal, D. K.; Gupta, S. K. et al. One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air-water interface by photopolymerization. RSC Adv. 2013, 3, 13329–13336.

63

Wu, D.; Du, D.; Lin, Y. H. Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. TrAC Trend. Anal. Chem. 2016, 83, 95–101.

64

Hou, X. D.; Xu, H.; Zhen, T. Y.; Wu, W. Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis. Trends Food Sci. Technol. 2020, 105, 76–92.

65

Lin, F.; Sun, Y. J.; Lai, J. P.; Wang, K.; Tang, Y. H.; Chao, Y. G.; Yang, Y.; Feng, J. R.; Lv, F.; Zhou, P. et al. 3D PtFe clusters with cube-in-cube structure enhance oxygen reduction catalysis and electrochemical sensing. Small Methods 2018, 2, 1800073.

66

Niu, J. Q.; An, W. T.; Zhang, X. J.; Ma, Y. Y.; Han, Z. G. Ultra-trace determination of hexavalent chromium in a wide pH range triggered by heterometallic Cu-Mn centers modified reduced phosphomolybdate hybrids. Chem. Eng. J. 2021, 418, 129408.

67

Alhamoud, Y.; Yang. D. T.; Kenston, S. S. F.; Liu, G. Z.; Liu, L. Y.; Zhou, H. B.; Ahmed, F.; Zhao, J. S. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens. Bioelectron. 2019, 141, 111418.

68

Suea-Ngam, A.; Howes, P. D.; Stanley, C. E.; deMello, A. J. An exonuclease I-assisted silver-metallized electrochemical aptasensor for ochratoxin A detection. ACS Sens. 2019, 4, 1560–1568.

69

Wang, Z.; Yu, H.; Han, J.; Xie, G.; Chen, S. P. Rare Co/Fe-MOFs exhibiting high catalytic activity in electrochemical aptasensors for ultrasensitive detection of ochratoxin A. Chem. Commun. 2017, 53, 9926–9929.

70

Hu, S. S.; Ouyang, W. J.; Guo, L. H.; Lin, Z. Y.; Jiang, X. H.; Qiu, B.; Chen, G. N. Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosens. Bioelectron. 2017, 92, 718–723.

71

Lv, L.; Li, D. H.; Cui, C. B.; Zhao, Y. Y.; Guo, Z. J. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Biosens. Bioelectron. 2017, 87, 136–141.

72

Feng, J. H.; Li, Y. Y.; Gao, Z. Q.; Lv, H.; Zhang, X. B.; Fan, D. W.; Wei, Q. Visible-light driven label-free photoelectrochemical immunosensor based on TiO2/S-BiVO4@Ag2S nanocomposites for sensitive detection OTA. Biosens. Bioelectron. 2018, 99, 14–20.

73

Qileng, A.; Wei, J.; Lu, N.; Liu, W. P.; Cai, Y.; Chen, M. S.; Lei, H. T.; Liu, Y. J. Broad-specificity photoelectrochemical immunoassay for the simultaneous detection of ochratoxin A, ochratoxin B and ochratoxin C. Biosens. Bioelectron. 2018, 106, 219–226.

74

Wei, J.; Chen, H. M.; Chen, H. H.; Cui, Y. Y.; Qileng, A.; Qin, W. W.; Liu, W. P.; Liu, Y. J. Multifunctional peroxidase-encapsulated nanoliposomes: Bioetching-induced photoelectrometric and colorimetric immunoassay for broad-spectrum detection of ochratoxins. ACS Appl. Mater. Interfaces 2019, 11, 23832–23839.

75

Qileng, A.; Liang, H. Z.; Huang, S. L.; Liu, W. P.; Xu, Z. L.; Liu, Y. J. Dual-function of ZnS/Ag2S nanocages in ratiometric immunosensors for the discriminant analysis of ochratoxins: Photoelectrochemistry and electrochemistry. Sens. Actuat. B Chem. 2020, 314, 128066.

76

Wei, J.; Liu, S. Q.; Qileng, A.; Qin, W. W.; Liu, W. P.; Wang, K.; Liu, Y. J. A photoelectrochemical/colorimetric immunosensor for broad-spectrum detection of ochratoxins using bifunctional copper oxide nanoflowers. Sens. Actuat. B Chem. 2021, 330, 129380.

File
12274_2021_3940_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 August 2021
Revised: 29 September 2021
Accepted: 18 October 2021
Published: 22 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21871077, 21671054, 21771052, 22071042, 22171070, 91122028, and 21831001) and the Program for Innovation Teams in Science and Technology in Universities of Henan Province (No. 20IRTSTHN004).

Return