Journal Home > Volume 15 , Issue 4

MXene is a new intercalation pseudocapacitive electrode material for supercapacitor application. Intensifying fast ion diffusion is significantly essential for MXene to achieve excellent electrochemical performance. The expansion of interlayer void by traditional spontaneous species intercalation always leads to a slight increase in capacitance due to the existence of species sacrificing the smooth diffusion of electrolyte ions. Herein, an effective intercalation−deintercalation interlayer design strategy is proposed to help MXene achieve higher capacitance. Electrochemical cation intercalation leads to the expansion of interlayer space. After electrochemical cation extraction, intercalated cations are deintercalated mostly, leaving a small number of cations trapped in the interlayer silt and serving as pillars to maintain the interlayer space, offering an open, unobstructed interlayer space for better ion migration and storage. Also, a preferred surface with more −O terminations for redox reaction is created due to the reaction between cations and −OH terminations. As a result, the processed MXene delivers a much improved capacitance compared to that of the original Ti3C2Tx electrode (T stands for the surface termination groups, such as −OH, −F, and −O). This study demonstrates an improvement of electrochemical performance of MXene electrodes by controlling the interlayer structure and surface chemistry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intercalation−deintercalation design in MXenes for high-performance supercapacitors

Show Author's information Zhenjiang Li1Jun Dai2Yiran Li3Changlong Sun1Alan Meng4Renfei Cheng5Jian Zhao1Minmin Hu1( )Xiaohui Wang5( )
School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Abstract

MXene is a new intercalation pseudocapacitive electrode material for supercapacitor application. Intensifying fast ion diffusion is significantly essential for MXene to achieve excellent electrochemical performance. The expansion of interlayer void by traditional spontaneous species intercalation always leads to a slight increase in capacitance due to the existence of species sacrificing the smooth diffusion of electrolyte ions. Herein, an effective intercalation−deintercalation interlayer design strategy is proposed to help MXene achieve higher capacitance. Electrochemical cation intercalation leads to the expansion of interlayer space. After electrochemical cation extraction, intercalated cations are deintercalated mostly, leaving a small number of cations trapped in the interlayer silt and serving as pillars to maintain the interlayer space, offering an open, unobstructed interlayer space for better ion migration and storage. Also, a preferred surface with more −O terminations for redox reaction is created due to the reaction between cations and −OH terminations. As a result, the processed MXene delivers a much improved capacitance compared to that of the original Ti3C2Tx electrode (T stands for the surface termination groups, such as −OH, −F, and −O). This study demonstrates an improvement of electrochemical performance of MXene electrodes by controlling the interlayer structure and surface chemistry.

Keywords: energy storage, MXene, supercapacitor, electrochemical ion intercalation−deintercalation, interlayer design

References(45)

1

Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.

2

Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

3

Guo, W.; Yu, C.; Li, S. F.; Song, X. D.; Huang, H. W.; Han, X. T.; Wang, Z.; Liu, Z. B.; Yu, J. H.; Tan, X. Y. et al. A universal converse voltage process for triggering transition metal hybrids in situ phase restruction toward ultrahigh-rate supercapacitors. Adv. Mater. 2019, 31, 1901241.

4

Qiu, D. P.; Li, M.; Kang, C. H.; Wei, J. Y.; Wang, F.; Yang, R. Cucurbit[6]uril-derived sub-4 nm pores-dominated hierarchical porous carbon for supercapacitors: Operating voltage expansion and pore size matching. Small 2020, 16, 2002718.

5

Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5–19.

6

Okubo, M.; Sugahara, A.; Kajiyama, S.; Yamada, A. MXene as a charge storage host. Acc. Chem. Res. 2018, 51, 591–599.

7

Tian, K. S.; Wang, J. Y.; Cao, L.; Yang, W.; Guo, W. C.; Liu, S. H.; Li, W.; Wang, F. Y.; Li X. A.; Xu, Z. P. et al. Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nat. Commun. 2020, 11, 3884.

8

Lubimtsev, A. A.; Kent, P. R. C.; Sumpter, B. G.; Ganesh, P. Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals. J. Mater. Chem. A 2013, 1, 14951–14956.

9

Chen, D. C.; Wang, J. H.; Chou, T. F.; Zhao, B. T.; El-Sayed, M. A.; Liu, M. L. Unraveling the nature of anomalously fast energy storage in T-Nb2O5. J. Am. Chem. Soc. 2017, 139, 7071–7081.

10

Yoo, H. D.; Li, Y. F.; Liang, Y. L.; Lan, Y. C.; Wang, F.; Yao, Y. Intercalation pseudocapacitance of exfoliated molybdenum disulfide for ultrafast energy storage. ChemNanoMat 2016, 2, 688–691.

11

Sun, R. M.; Wei, Q. L.; Sheng, J. Z.; Shi, C. W.; An, Q. Y.; Liu, S. J.; Mai, L. Q. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 2017, 35, 396–404.

12

Lin, Z.; Goikolea, E.; Balducci, A.; Naoi, K.; Taberna, P. L.; Salanne, M.; Yushin, G.; Simon, P. Materials for supercapacitors: When Li-ion battery power is not enough. Mater. Today 2018, 21, 419–436.

13

Lukatskaya, M. R.; Bak, S. M.; Yu, X. Q.; Yang, X. Q.; Barsoum, M. W.; Gogotsi, Y. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 2015, 5, 1500589.

14

Hu, M. M.; Zhang, H.; Hu, T.; Fan, B. B.; Wang, X. H.; Li, Z. J. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693.

15

Mu, X. P.; Wang, D. S.; Du, F.; Chen, G.; Wang, C. Z.; Wei, Y. J.; Gogotsi, Y.; Gao, Y.; Dall'Agnese, Y. Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv. Funct. Mater. 2019, 29, 1902953.

16

Li, N.; Peng, J. H.; Ong, W. J.; Ma, T. T.; Arramel; Zhang, P.; Jiang, J. Z.; Yuan, X. F.; Zhang, C. F. MXenes: An emerging platform for wearable electronics and looking beyond. Matter 2021, 4, 377–407.

17

Abdolhosseinzadeh, S.; Jiang, X. T.; Zhang, H.; Qiu, J. S.; Zhang, C. F. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 2021, 48, 214–240.

18

Abdolhosseinzadeh, S.; Heier, J.; Zhang, C. F. Printing and coating MXenes for electrochemical energy storage devices. J. Phys. Energy 2020, 2, 031004.

19

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

20

Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

21

Dall'Agnese, Y.; Lukatskaya, M. R.; Cook, K. M.; Taberna, P. L.; Gogotsi, Y.; Simon, P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 2014, 48, 118–122.

22

Mashtalir, O.; Lukatskaya, M. R.; Kolesnikov, A. I.; Raymundo-Piñero, E.; Naguib, M.; Barsoum, M. W.; Gogotsi, Y. The effect of hydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale 2016, 8, 9128–9133.

23

Boota, M.; Pasini, M.; Galeotti, F.; Porzio, W.; Zhao, M. Q.; Halim, J.; Gogotsi, Y. Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): Intercalation and pseudocapacitance. Chem. Mater. 2017, 29, 2731–2738.

24

Zhang, C. F. Interfacial assembly of two-dimensional MXenes. J. Energy Chem. 2021, 60, 417–434.

25

Ghidiu, M.; Kota, S.; Halim, J.; Sherwood, A. W.; Nedfors, N.; Rosen, J.; Mochalin, V. N.; Barsoum, M. W. Alkylammonium cation intercalation into Ti3C2 (MXene): Effects on properties and ion-exchange capacity estimation. Chem. Mater. 2017, 29, 1099–1106.

26

Wang, X. H.; Zhou, Y. C. Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. J. Mater. Chem. 2002, 12, 455–460.

27

Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569.

28

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

29

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

30

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

31

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

32

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

33

Osti, N. C.; Naguib, M.; Ostadhossein, A.; Xie, Y.; Kent, P. R. C.; Dyatkin, B.; Rother, G.; Heller, W. T.; Van Duin, A. C. T.; Gogotsi, Y. et al. Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl. Mater. Interfaces 2016, 8, 8859–8863.

34

Li, J.; Yuan, X. T.; Lin, C.; Yang, Y. Q.; Xu, L.; Du, X.; Xie, J. L.; Lin, J. H.; Sun, J. L. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725.

35

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

36

Du, X.; Zhao, W.; Wang, Y.; Wang, C. Y.; Chen, M. M.; Qi, T.; Hua, C.; Ma, M. G. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications. Bioresour. Technol. 2013, 149, 31–37.

37

Frackowiak, E.; Delpeux, S.; Jurewicz, K.; Szostak, K.; Cazorla-Amoros, D.; Béguin, F. Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett. 2002, 361, 35–41.

38

Xue, H. Y.; Zhang, H. Q.; Fricke, S.; Lüther, M.; Yang, Z. J.; Meng, A. L.; Bremser, W.; Li, Z. J. Scalable and energy-efficient synthesis of CoxP for overall water splitting in alkaline media by high energy ball milling. Sustainable Energy Fuels 2020, 4, 1723–1729.

39

Esfandiar, A.; Radha, B.; Wang, F. C.; Yang, Q.; Hu, S.; Garaj, S.; Nair, R. R.; Geim, A. K.; Gopinadhan, K. Size effect in ion transport through angstrom-scale slits. Science 2017, 358, 511–513.

40

Klein, J. Hydration lubrication. Friction 2013, 1, 1–23.

41

Shpigel, N.; Levi, M. D.; Sigalov, S.; Mathis, T. S.; Gogotsi, Y.; Aurbach, D. Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique. J. Am. Chem. Soc. 2018, 140, 8910–8917.

42

Hu, T.; Wang, J. M.; Zhang, H.; Li, Z. J.; Hu, M. M.; Wang, X. H. Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: A comparative study. Phys. Chem. Chem. Phys. 2015, 17, 9997–10003.

43

Xie, Y.; Dall’Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 2014, 8, 9606–9615.

44

Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X. Q.; Nam, K. W.; Yang, X. Q.; Kolesnikov, A. I.; Kent, P. R. C. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 2014, 136, 6385–6394.

45

Peng, Q. M.; Guo, J. X.; Zhang, Q. R.; Xiang, J. Y.; Liu, B. Z.; Zhou, A. G.; Liu, R. P.; Tian, Y. J. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 2014, 136, 4113–4116.

File
12274_2021_3939_MOESM1_ESM.pdf (491.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 July 2021
Revised: 09 October 2021
Accepted: 18 October 2021
Published: 22 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The work reported here was supported by the National Natural Science Foundation of China (Nos. 52072196, 52002199, 52002200, 52071171, and 52102106), Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09), Natural Science Foundation of Shandong Province (Nos. ZR2019BEM042 and ZR2020QE063), the Innovation and Technology Program of Shandong Province (No. 2020KJA004), the Open Project of Chemistry Department of Qingdao University of Science and Technology (No. QUSTHX201813), the Taishan Scholars Program of Shandong Province (No. ts201511034), China Postdoctoral Science Foundation (No. 2020M683450), the Guangdong Basic and Applied Basic Research Foundation (Nos. 2019A1515110933, 2019A1515110554, 2020A1515111086, and 2020A1515110219), and the Innovation Pilot Project of Integration of Science, Education and Industry of Shandong Province (No. 2020KJC-CG04). We express our grateful thanks to them for their financial support.

Return