Journal Home > Volume 15 , Issue 4

Lithium (Li)-O2 batteries have triggered worldwide interest due to their ultrahigh theoretical energy density. However, it is a long shot for the grand-scale applications of Li-O2 battery at current stage owing to its significant polarization, inferior cycling life, and irreversible decomposition of Li2O2. Herein, a facile way of preparing the highly dispersed Co-based nanoparticles encapsulated into porous N-doping carbon polyhedral with the low content of Ru modification (LRu@HDCo-NC) is explored through the pyrolysis of Co/Zn based zeolitic imidazole frameworks (ZIFs) containing Ru-based ligands. Even with the very small amount of Ru introduction (1.8%), LRu@HDCo-NC still exhibits the superior oxygen evolution reaction/oxygen reduction reaction (OER/ORR) performance and also inhibits side reactions in Li-O2 battery because of the abundant pores, plentiful surface N heteroatoms, and highly dispersed metal-based sites which are induced by the volatilization of Zn, and conductive/stable carbon skeleton derived from ZIFs. When applied in Li-O2 batteries, LRu@HDCo-NC cathode delivers a high discharge capacity of 15,973 mAh·g−1 at 200 mA·g−1, good capacity retention at higher rate (12,362 mAh·g−1 at 500 mA·g−1) and outstanding stability for > 300 cycles with low voltage polarization of < 2.3 V under a cut-off capacity of 1,000 mAh·g −1 at 500 mA·g−1. More critically, a series of ex situ and in situ characterization technologies disclose that the LRu@HDCo-NC cathodes can effectively promote the reversible reactions in Li-O2 batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The highly dispersed Co-based nanoparticles encapsulated into porous N-doping carbon polyhedral with the low content of Ru modification as a promising cathode catalyst for long-life Li-O2 batteries

Show Author's information Yiru Ma1Huiqi Qu4Zhenzhen Chi1Xiaoqiang Liu1Yueqin Yu2Ziyang Guo1( )Lei Wang1,3( )
Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-chemical Process and Technology, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Abstract

Lithium (Li)-O2 batteries have triggered worldwide interest due to their ultrahigh theoretical energy density. However, it is a long shot for the grand-scale applications of Li-O2 battery at current stage owing to its significant polarization, inferior cycling life, and irreversible decomposition of Li2O2. Herein, a facile way of preparing the highly dispersed Co-based nanoparticles encapsulated into porous N-doping carbon polyhedral with the low content of Ru modification (LRu@HDCo-NC) is explored through the pyrolysis of Co/Zn based zeolitic imidazole frameworks (ZIFs) containing Ru-based ligands. Even with the very small amount of Ru introduction (1.8%), LRu@HDCo-NC still exhibits the superior oxygen evolution reaction/oxygen reduction reaction (OER/ORR) performance and also inhibits side reactions in Li-O2 battery because of the abundant pores, plentiful surface N heteroatoms, and highly dispersed metal-based sites which are induced by the volatilization of Zn, and conductive/stable carbon skeleton derived from ZIFs. When applied in Li-O2 batteries, LRu@HDCo-NC cathode delivers a high discharge capacity of 15,973 mAh·g−1 at 200 mA·g−1, good capacity retention at higher rate (12,362 mAh·g−1 at 500 mA·g−1) and outstanding stability for > 300 cycles with low voltage polarization of < 2.3 V under a cut-off capacity of 1,000 mAh·g −1 at 500 mA·g−1. More critically, a series of ex situ and in situ characterization technologies disclose that the LRu@HDCo-NC cathodes can effectively promote the reversible reactions in Li-O2 batteries.

Keywords: zeolitic imidazole frameworks, Zn volatilization, high dispersed Co-based particles, Ru modification, rechargeable Li-O2 batteries

References(55)

1

Kong, L. J.; Zhong, M.; Shuang, W.; Xu, Y. H.; Bu, X. H. Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chem. Soc. Rev. 2020, 49, 2378–2407.

2

Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

3

Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S. et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86.

4

Gao, H. N.; Gallant, B. M. Advances in the chemistry and applications of alkali-metal-gas batteries. Nat. Rev. Chem. 2020, 4, 566–583.

5

Luo, Z. K.; Liang, C. S.; Wang, F.; Xu, Y. H.; Chen, J.; Liu, D.; Sun, H. Y.; Yang, H.; Fan, X. P. Optimizing main materials for a lithium-air battery of high cycle life. Adv. Funct. Mater. 2014, 24, 2101–2105.

6

Chi, X. W.; Li, M. L.; Di, J. C.; Bai, P.; Song, L. N.; Wang, X. X.; Li, F.; Liang, S.; Xu, J. J.; Yu, J. H. A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature 2021, 592, 551–557.

7

Chen, L.; Chen, Z.; Liu, X. D.; Wang, X. L. Bimetallic metal-organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions. Nano Res. 2021, 14, 1533–1540.

8

Wang, C. Y.; Zhang, Z. H.; Liu, W. W.; Zhang, Q. M.; Wang, X. G.; Xie, Z. J.; Zhou, Z. Enzyme-inspired room-temperature lithium-oxygen chemistry via reversible cleavage and formation of dioxygen bonds. Angew. Chem., Int. Ed. 2020, 59, 17856–17863.

9

Nai, J. W.; Zhao, X. Y.; Yuan, H. D.; Tao, X. Y.; Guo, L. Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries. Nano Res. 2021, 14, 2053–2066.

10

Lee, J. S.; Kim, S. T.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 2011, 1, 34–50.

11

Gao, X. W.; Chen, Y. H.; Johnson, L. R.; Jovanov, Z. P.; Bruce, P. G. A rechargeable lithium-oxygen battery with dual mediators stabilizing the carbon cathode. Nat. Energy 2017, 2, 17118.

12

Zhou, B.; Guo, L. M.; Zhang, Y. T.; Wang, J. W.; Ma, L. P.; Zhang, W. H.; Fu, Z. W.; Peng, Z. Q. A high-performance Li-O2 battery with a strongly solvating hexamethylphosphoramide electrolyte and a LiPON-protected lithium anode. Adv. Mater. 2017, 29, 1701568.

13

Bi, X. X.; Li, M.; Liu, C.; Yuan, Y. F.; Wang, H.; Key, B.; Wang, R. Y.; Shahbazian-Yassar, R.; Curtiss, L. A.; Lu, J. et al. Cation additive enabled rechargeable LiOH-based lithium-oxygen batteries. Angew. Chem., Int. Ed. 2020, 59, 22978–22982.

14

Qiao, Y.; Wang, Q. F.; Mu, X. W.; Deng, H.; He, P.; Yu, J. H.; Zhou, H. S. Advanced hybrid electrolyte Li-O2 battery realized by dual superlyophobic membrane. Joule 2019, 3, 2986–3001.

15

Lim, H. D.; Lee, B.; Bae, Y.; Park, H.; Ko, Y.; Kim, H.; Kim, J.; Kang, K. Reaction chemistry in rechargeable Li-O2 batteries. Chem. Soc. Rev. 2017, 46, 2873–2888.

16

Qiao, Y.; Yi, J.; Guo, S. H.; Sun, Y.; Wu, S. C.; Liu, X. Z.; Yang, S. X.; He, P.; Zhou, H. S. Li2CO3-free Li-O2/CO2 battery with peroxide discharge product. Energy Environ. Sci. 2018, 11, 1211–1217.

17

Dai, L. N.; Sun, Q.; Chen, L. N.; Guo, H. H.; Nie, X. K.; Cheng, J.; Guo, J. G.; Li, J. W.; Lou, J.; Ci, L. J. Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Res. 2020, 13, 2356–2364.

18

Peng, Z. Q.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y. H.; Giordani, V.; Bardé, F.; Novák, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem., Int. Ed. 2011, 50, 6351–6355.

19

Xu, S. M.; Liang, X.; Wu, X. Y.; Zhao, S. L.; Chen, J.; Wang, K. X.; Chen, J. S. Multistaged discharge constructing heterostructure with enhanced solid-solution behavior for long-life lithium-oxygen batteries. Nat. Commun. 2019, 10, 5810.

20

Gong, H.; Wang, T.; Xue, H. R.; Lu, X. Y.; Xia, W.; Song, L.; Zhang, S. T.; He, J. P.; Ma, R. Z. Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode. Nano Res. 2019, 12, 2528–2534.

21

Liu, T.; Vivek, J. P.; Zhao, E. W.; Lei, J.; Garcia-Araez, N.; Grey, C. P. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 2020, 120, 6558–6625.

22

Lai, J. N.; Xing, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. J. Electrolytes for rechargeable lithium-air batteries. Angew. Chem., Int. Ed. 2020, 59, 2974–2997.

23

Zhang, P.; Ding, M. J.; Li, X. X.; Li, C. X.; Li, Z. Q.; Yin, L. W. Challenges and strategy on parasitic reaction for high-performance nonaqueous lithium-oxygen batteries. Adv. Energy Mater. 2020, 10, 2001789.

24

Luo, J. R.; Yao, X. H.; Yang, L., Han, Y.; Chen, L.; Geng, X. M.; Vattipalli, V.; Dong, Q.; Fan, W.; Wang, D. W.; Zhu, H. L. Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Res. 2017, 10, 4318–4326.

25

Shu, C. Z.; Wang, J. Z.; Long, J. P.; Liu, H. K.; Dou, S. X. Understanding the reaction chemistry during charging in aprotic lithium-oxygen batteries: Existing problems and solutions. Adv. Mater. 2019, 31, 1804587.

26

Liu, T.; Wang, L. D. Y.; Huang, T.; Yu, A. S. Well-defined carbon nanoframes containing bimetal-N-C active sites as efficient bi-functional electrocatalysts for Li-O2 batteries. Nano Res. 2019, 12, 517–523.

27

Li, M.; Bi, X. X.; Wang, R. Y.; Li, Y. B.; Jiang, G. P.; Li, L.; Zhong, C.; Chen, Z. W.; Lu, J. Relating catalysis between fuel cell and metal-air batteries. Matter 2020, 2, 32–49.

28

Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

29

Mu, X. W.; Wen, Q. H.; Ou, G.; Du, Y. M.; He, P.; Zhong, M. L.; Zhu, H.; Wu, H.; Yang, S. X.; Liu, Y. J. et al. A current collector covering nanostructured villous oxygen-deficient NiO fabricated by rapid laser-scan for Li-O2 batteries. Nano Energy 2018, 51, 83–90.

30

Mu, X. W.; Jiang, J.; Deng, H.; Qiao, Y.; Zheng, M. B.; Zhang, X. P.; He, P.; Zhou, H. S. H2O self-trapping air cathode of Li-O2 battery enabling low charge potential operating in dry system. Nano Energy 2019, 64, 103945.

31

Liu, T.; Huang, T.; Yu, A. S. Rational design of a hierarchical N-doped graphene-supported catalyst for highly energy-efficient lithium-oxygen batteries. J. Mater. Chem. A 2019, 7, 19745–19752.

32

Zhao, R.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Metal-organic frameworks for batteries. Joule 2018, 2, 2235–2259.

33

Jiang, Z. L.; Sun, H.; Shi, W. K.; Zhou, T. H.; Hu, J. Y.; Cheng, J. Y.; Hu, P. F.; Sun, S. G. Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery. Nano Res. 2019, 12, 1555–1562.

34

Lyu, Z. Y.; Lim, G. J. H.; Guo, R.; Kou, Z. K.; Wang, T. T.; Guan, C.; Ding, J.; Chen, W.; Wang, J. 3D-Printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 Batteries. Adv. Funct. Mater. 2019, 29, 1806658.

35

Chao, F. F.; Wang, B. X.; Ren, J. J.; Lu, Y. W.; Zhang, W. R.; Wang, X. Z.; Cheng, L.; Lou, Y. B.; Chen, J. X. Micro-meso-macroporous FeCo-N-C derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance. J. Energy Chem. 2019, 35, 212–219.

36

Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2014, 53, 442–446.

37

Hu, X. L.; Luo, G.; Zhao, Q. N.; Wu, D.; Yang, T. X.; Wen, J.; Wang, R. H.; Xu, C. H.; Hu, N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J. Am. Chem. Soc. 2020, 142, 16776–16786.

38

Huang, K. X.; Zhang, W. Q.; Li, J.; Fan, Y. J.; Yang, B.; Rong, C. Y.; Qi, J. H.; Chen, W.; Yang, J. In situ anchoring of zeolite imidazole framework-derived Co, N-doped porous carbon on multiwalled carbon nanotubes toward efficient electrocatalytic oxygen reduction. ACS Sustainable Chem. Eng. 2019, 8, 478–485.

39

Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

40

Wang, J.; Yin, Y. B.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Zhang, X. B. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Res. 2018, 11, 3434–3441.

41

Liang, Z. Z.; Kong, N. N.; Yang, C. X.; Zhang, W.; Zheng, H. Q.; Lin, H. P.; Cao, R. Highly curved nanostructure-coated Co, N-doped carbon materials for oxygen electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 12759–12764.

42

Wang, P.; Ren, Y. Y.; Wang, R. T.; Zhang, P.; Ding, M. J.; Li, C. X.; Zhao, D. Y.; Qian, Z.; Zhang, Z. W.; Zhang, L. Y. et al. Atomically dispersed cobalt catalyst anchored on nitrogen-doped carbon nanosheets for lithium-oxygen batteries. Nat. Commun. 2020, 11, 1576.

43

Luo, N.; Ji, G. J.; Wang, H. F.; Li, F.; Liu, Q. C.; Xu, J. J. Process for a free-standing and stable all-metal structure for symmetrical lithium-oxygen batteries. ACS Nano 2020, 14, 3281–3289.

44

Guan, D. H.; Wang, X. X.; Li, M. L.; Li, F.; Zheng, L. J.; Huang, X. L.; Xu, J. J. Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li-CO2 battery. Angew. Chem., Int. Ed. 2020, 59, 19518–19524.

45

Li, M. L.; Wang, X. X.; Li, F.; Zheng, L. J.; Xu, J. J.; Yu, J. H. A bifunctional photo-assisted Li-O2 battery based on a hierarchical heterostructured cathode. Adv. Mater. 2020, 32, 1907098.

46

Wang, H. F.; Wang, X. X; Li, M. L.; Zheng, L. J.; Guan, D. H.; Huang, X. L.; Xu, J. J.; Yu, J. H. Porous materials applied in nonaqueous Li-O2 batteries: Status and perspectives. Adv. Mater. 2020, 32, 2002559.

47

Song, L. N.; Zhang, W.; Wang, Y.; Ge, X.; Zou, L. C.; Wang, H. F.; Wang, X. X.; Liu, Q. C.; Li, F.; Xu, J. J. Tuning lithium-peroxide formation and decomposition routes with single-atom catalysts for lithium-oxygen batteries. Nat. Commun. 2020, 11, 2191.

48

Liu, X. M.; Zhao, L. L.; Xu, H. R.; Huang, Q. S.; Wang, Y. Q.; Hou, C. X.; Hou, Y. Y.; Wang, J.; Dang, F.; Zhang, J. T. Tunable cationic vacancies of cobalt oxides for efficient electrocatalysis in Li-O2 batteries. Adv. Energy Mater. 2020, 10, 2001415.

49

Allen, C. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. Oxygen electrode rechargeability in an ionic liquid for the Li-air battery. J. Phys. Chem. Lett. 2011, 2, 2420–2424.

50

Lu, Y. C.; Gasteiger, H. A.; Shao-Horn, Y. Method development to evaluate the oxygen reduction activity of high-surface-area catalysts for Li-air batteries. Electrochem. Solid-State Lett. 2011, 14, A70–A74.

51

Luo, X. Y.; Amine, R.; Lau, K. C.; Lu, J.; Zhan, C.; Curtiss, L. A.; Hallaj, S. A.; Chaplin, B. P.; Amine, K. Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study. Nano Res. 2017, 10, 4327–4336.

52

Li, J. L.; Zhao, H. M.; Qi, H. C.; Sun, X. M.; Song, X. Y.; Guo, Z. Y.; Tamirat, A. G.; Liu, J.; Wang, L.; Feng, S. H. Drawing a pencil-trace cathode for a high-performance polymer-based Li-CO2 battery with redox mediator. Adv. Funct. Mater. 2019, 29, 1806863.

53

Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

54

Sun, B.; Huang, X. D.; Chen, S. Q.; Munroe, P.; Wang, G. X. Porous graphene nanoarchitectures: An efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. Nano Lett. 2014, 14, 3145–3152.

55

Shi, L.; Li, Z.; Li, Y. P.; Wang, G.; Wu, M. F.; Wen, Z. Y. Suppressing redox shuttle with MXene-modified separators for Li-O2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 30766–30775.

File
12274_2021_3938_MOESM1_ESM.pdf (768.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 July 2021
Revised: 30 August 2021
Accepted: 15 October 2021
Published: 04 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors acknowledge funding support from the National Natural Science Foundation of China (Nos. 21905151 and 51772162), Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (No. 2019KJC004), Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), Taishan Scholar Young Talent Program, Major Scientific and Technological Innovation Project (No. 2019JZZY020405), and the Postdoctoral Science Foundation of China (No. 2019M652499).

Return