AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous β-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation

Hao Sun1,§Hua-Qing Yin1,§Wenxiong Shi1,§Lu-Lu Yang1Xiang-Wei Guo1Hong Lin1Jiangwei Zhang2( )Tong-Bu Lu1Zhi-Ming Zhang( )
Institute for New Energy Materials & Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China

§ Hao Sun, Hua-Qing Yin, and Wenxiong Shi contributed equally to this work.

Show Author Information

Graphical Abstract

A highly efficient single-atom catalyst Au-SA/FeOOH was facilely synthesized via deposition–precipitation process. The combination of porous metal oxide support and highly active single-atom Au can dramatically promote the activation and fixation of dinitrogen (N2) to achieve a ammonia (NH3) yield of 2,860 μg·h−1·mgAu−1 under ambient conditions.

Abstract

Electrochemical nitrogen reduction reaction (NRR) under ambient conditions is highly desirable to achieve sustainable ammonia (NH3) production via an alternative carbon free strategy. Single-atom catalysts (SACs) with super high atomic utilization and catalytic efficiency exhibit great potential for NRR. Herein, a high-performance NRR SAC is facilely prepared via a simple deposition method to anchor Au single atoms onto porous β-FeOOH nanotubes. The resulting Au-SA/FeOOH can efficiently drive NRR under ambient conditions, and the NH3 yield reaches as high as 2,860 μg·h−1·mgAu−1 at −0.4 V vs. reversible hydrogen electrode (RHE) with 14.2% faradaic efficiency, much superior to those of all the reported Au-based electrocatalysts. Systematic investigations demonstrate that the synergy of much enhanced N2 adsorption, directional electron export, and mass transfer ability in Au-SA/FeOOH greatly contributes to the superior NRR activity. This work highlights a new insight into the design of high efficient NRR electrocatalysts by combination of porous metal oxide matrix and highly active single-atom sites.

Electronic Supplementary Material

Download File(s)
12274_2021_3937_MOESM1_ESM.pdf (1 MB)

References

1

Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

2

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

3

Wang, L.; Xia, M. K.; Wang, H.; Huang, K. F.; Qian, C. X.; Maravelias, C. T.; Ozin, G. A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055–1074.

4

Wang, X. J.; Luo, M.; Lan, J.; Peng, M.; Tan, Y. W. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction. Adv. Mater. 2021, 33, 2007733.

5

Gao, X.; An, L.; Qu, D.; Jiang, W. S.; Chai, Y. X.; Sun, S. R.; Liu, X. Y.; Sun, Z. C. Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Sci. Bull. 2019, 64, 918–925.

6

Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 µgNH3·mgcat.−1·h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

7

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Hang, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

8

Lin, G. X.; Ju, Q. J.; Guo, X. W.; Zhao, W.; Adimi, S.; Ye, J. Y.; Bi, Q. Y.; Wang, J. C.; Yang, M. H.; Huang, F. Q. Intrinsic electron localization of metastable MoS2 boosts electrocatalytic nitrogen reduction to ammonia. Adv. Mater. 2021, 33, 2007509.

9

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

10

Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlogl, R. The Haber–Bosch process revisited: On the real structure and stability of pammonia ironq under working conditions. Angew. Chem., Int. Ed. 2013, 52, 12723–12726.

11

Zhao, R. B.; Xie, H. T.; Chang, L.; Zhang, X. X.; Zhu, X. J.; Tong, X.; Wang, T.; Luo, Y. L.; Wei, P. P.; Wang, Z. M. et al. Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem 2019, 1, 100011.

12

Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

13

Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

14

Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.

15

Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 2021, 29, 100766.

16

Chen, H. J.; Liang, J.; Li, L.; Zheng, B. Z.; Feng, Z. S.; Xu, Z. Q.; Luo, Y. L.; Liu, Q.; Shi, X. F.; Liu, Y. et al. Ti2O3 nanoparticles with Ti3+ sites toward efficient NH3 electrosynthesis under ambient conditions. ACS Appl. Mater. Interfaces 2021, 13, 41715–41722.

17

Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

18

Du, Z. B.; Liang, J.; Li, S. X.; Xu, Z. Q.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Liu, Y.; Kong, Q. Q. et al. Alkylthiol surface engineering: An effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray. J. Mater. Chem. A 2021, 9, 13861–13866.

19

Yang, Y. J.; Wang, S. Q.; Wen, H. M.; Ye, T.; Chen, J.; Li, C. P.; Du, M. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 15362–15366.

20

Ren, Y. W.; Yu, C.; Tan, X. Y.; Huang, H. L.; Wei, Q. B.; Qiu, J. S. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176–1193.

21

Zhang, J.; Ji, Y. J.; Wang, P. T.; Shao, Q.; Li, Y. Y.; Huang, X. Q. Adsorbing and activating N2 on heterogeneous Au-Fe3O4 nanoparticles for N2 fixation. Adv. Funct. Mater. 2020, 30, 1906579.

22

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

23

Xue, Z. H.; Zhang, S. N.; Lin, Y. X.; Su, H.; Zhai, G. Y.; Han, J. T.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% faradaic efficiency. J. Am. Chem. Soc. 2019, 141, 14976–14980.

24

Wang, P. T.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Huang, X. Q. Core@shell structured Au@SnO2 nanoparticles with improved N2 adsorption/activation and electrical conductivity for efficient N2 fixation. Sci. Bull. 2020, 65, 350–358.

25

Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

26
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: 10.1007/s12274-021-3794-0.
27

Qi, S. Y.; Wang, J. R.; Song, X. H.; Fan, Y. C.; Li, W. F.; Du, A. J.; Zhao, M. W. Synergistic trifunctional electrocatalysis of pyridinic nitrogen and single transition-metal atoms anchored on pyrazine-modified graphdiyne. Sci. Bull. 2020, 65, 995–1002.

28

Zhou, P.; Chao, Y. G.; Lv, F.; Lai, J. P.; Wang, K.; Guo, S. J. Designing noble metal single-atom-loaded two-dimension photocatalyst for N2 and CO2 reduction via anion vacancy engineering. Sci. Bull. 2020, 65, 720–725.

29

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

30

Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2018, 2, 1800202.

31

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

32

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

33

Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

34

Wang, Y.; Wang, D. S.; Li, Y. D. Atom-level interfacial synergy of single-atom site catalysts for electrocatalysis. J. Energy Chem. 2022, 65, 103–115.

35

Hu, L.; Khaniya, A.; Wang, J.; Chen, G.; Kaden, W. E.; Feng, X. F. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal. 2018, 8, 9312–9319.

36

Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386–14389.

37

Liu, J. Q.; Zheng, M. B.; Shi, X. Q.; Zeng, H. B.; Xia, H. Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater. 2016, 26, 919–930.

38

Zhu, X. J.; Liu, Z. C.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Wang, T.; Wang, F. X.; Luo, Y. L.; Wu, Y. P.; Sun, X. P. Boosting electrocatalytic N2 reduction to NH3 on β-FeOOH by fluorine doping. Chem. Commun. 2019, 55, 3987–3990.

39

Zhu, X. J.; Liu, Z. C.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Wu, Y. P.; Sun, X. P. Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chem. Commun. 2018, 54, 11332–11335.

40

Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209–214.

41

Nazemi, M.; Ou, P. F.; Alabbady, A.; Soule, L.; Liu, A. L.; Song, J.; Sulchek, T. A.; Liu, M. L.; El-Sayed, M. A. Electrosynthesis of ammonia using porous bimetallic Pd-Ag nanocatalysts in liquid- and gas-phase systems. ACS Catal. 2020, 10, 10197–10206.

42

Guo, C. Y.; Liu, X. J.; Gao, L. F.; Kuang, X.; Ren, X.; Ma, X. J.; Zhao, M. Z.; Yang, H.; Sun, X.; Wei, Q. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions. Appl. Catal. B Environ. 2020, 263, 118296.

43

Lin, H.; Wang, J. W.; Guo, X. W.; Yao, S.; Liu, M.; Zhang, Z. M.; Lu, T. B. Phosphorized polyoxometalate-etched iron-hydroxide porous nanotubes for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 2018, 6, 24479–24485.

44

Leng, F. C.; Liu, H.; Ding, M. L.; Lin, Q. P.; Jiang, H. L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters. ACS Catal. 2018, 8, 4583–4590.

45

Mao, B. D.; Kang, Z. H.; Wang, E. B.; Tian, C. G.; Zhang, Z. M.; Wang, C. L.; Li, S. H. Polyoxometalate-assisted one-step fabrication of porous nanorods of β-FeOOH and the facile transition to hematite. Chem. Lett. 2007, 36, 70–71.

46

Luo, Y. R.; Chen, G. F.; Ding, L.; Chen, X. Z.; Ding, L. X.; Wang, H. H. Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 2019, 3, 279–289.

47

Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.

48

Sham, L. J.; Kohn, W. One-particle properties of an inhomogeneous interacting electron gas. Phys. Rev. 1966, 145, 561–567.

49

Yao, C. H.; Guo, N.; Xi, S. B.; Xu, C. Q.; Liu, W.; Zhao, X. X.; Li, J.; Fang, H. Y.; Su, J.; Chen, Z. X. et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 2020, 11, 4389.

50

Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X. L.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406.

51

Wang, Z. Q.; Li, Y. H.; Yu, H. J.; Xu, Y.; Xue, H. R.; Li, X. N.; Wang, H. J.; Wang, L. Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures. ChemSusChem 2018, 11, 3480–3485.

52

Chen, Y. C.; Lin, Y. G.; Hsu, Y. K.; Yen, S. C.; Chen, K. H.; Chen, L. C. Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. Small 2014, 10, 3803–3810.

53

McIntyre, N. S.; Zetaruk, D. G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 1997, 49, 1521–1529.

54

Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina. Chem. Mater. 1990, 2, 186–191.

Nano Research
Pages 3026-3033
Cite this article:
Sun H, Yin H-Q, Shi W, et al. Porous β-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation. Nano Research, 2022, 15(4): 3026-3033. https://doi.org/10.1007/s12274-021-3937-3
Topics:

923

Views

31

Crossref

29

Web of Science

28

Scopus

6

CSCD

Altmetrics

Received: 27 September 2021
Revised: 13 October 2021
Accepted: 14 October 2021
Published: 18 November 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return