Journal Home > Volume 16 , Issue 4

The rapid development of portable, foldable, and wearable electronic devices requires flexible energy storage systems. Sodium-ion capacitors (SICs) combining the high energy of batteries and the high power of supercapacitors are promising solutions. However, the lack of flexible and durable electrode materials that allow fast and reversible Na+ storage hinders the development of flexible SICs. Herein, we report a high-capacity, free-standing and flexible Sb2S3/Ti3C2Tx composite film for fast and stable sodium storage. In this hybrid nano-architecture, the Sb2S3 nanowires uniformly anchored between Ti3C2Tx nanosheets not only act as sodium storage reservoirs but also pillar the two-dimensional (2D) Ti3C2Tx to form three-dimensional (3D) channels benefiting for electrolyte penetration. Meanwhile, the highly conductive Ti3C2Tx nanosheets provide rapid electron transport pathways, confine the volume expansion of Sb2S3 during sodiation, and restrain the dissolution of discharged sodium polysulfides through physical constraint and chemical absorption. Owing to the synergistic effects of the one-dimensional (1D) Sb2S3 nanowires and 2D MXenes, the resultant composite anodes exhibit outstanding rate performance (553 mAh·g−1 at 2 A·g−1) and cycle stability in sodium-ion batteries. Moreover, the flexible SICs using Sb2S3/Ti3C2Tx anodes and active carbon/reduced graphene oxide (AC/rGO) paper cathodes deliver a superior energy and power density in comparison with previously reported devices, as well as an excellent cycling performance with a high capacity retention of 82.78% after 5,000 cycles. This work sheds light on the design of next-generation low-cost, flexible and fast-charging energy storage devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible sodium-ion capacitors boosted by high electrochemically-reactive and structurally-stable Sb2S3 nanowire/Ti3C2Tx MXene film anodes

Show Author's information Jian Yang1Tianyi Wang1,2Xin Guo2( )Xiaoxue Sheng1Jiabao Li1Chengyin Wang1( )Guoxiu Wang2( )
Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
Centre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia

Abstract

The rapid development of portable, foldable, and wearable electronic devices requires flexible energy storage systems. Sodium-ion capacitors (SICs) combining the high energy of batteries and the high power of supercapacitors are promising solutions. However, the lack of flexible and durable electrode materials that allow fast and reversible Na+ storage hinders the development of flexible SICs. Herein, we report a high-capacity, free-standing and flexible Sb2S3/Ti3C2Tx composite film for fast and stable sodium storage. In this hybrid nano-architecture, the Sb2S3 nanowires uniformly anchored between Ti3C2Tx nanosheets not only act as sodium storage reservoirs but also pillar the two-dimensional (2D) Ti3C2Tx to form three-dimensional (3D) channels benefiting for electrolyte penetration. Meanwhile, the highly conductive Ti3C2Tx nanosheets provide rapid electron transport pathways, confine the volume expansion of Sb2S3 during sodiation, and restrain the dissolution of discharged sodium polysulfides through physical constraint and chemical absorption. Owing to the synergistic effects of the one-dimensional (1D) Sb2S3 nanowires and 2D MXenes, the resultant composite anodes exhibit outstanding rate performance (553 mAh·g−1 at 2 A·g−1) and cycle stability in sodium-ion batteries. Moreover, the flexible SICs using Sb2S3/Ti3C2Tx anodes and active carbon/reduced graphene oxide (AC/rGO) paper cathodes deliver a superior energy and power density in comparison with previously reported devices, as well as an excellent cycling performance with a high capacity retention of 82.78% after 5,000 cycles. This work sheds light on the design of next-generation low-cost, flexible and fast-charging energy storage devices.

Keywords: sodium-ion batteries, MXene, flexible energy storage devices, sodium-ion capacitors, Sb2S3 nanowires

References(62)

[1]

Gwon, H.; Kim, H. S.; Lee, K. U.; Seo, D. H.; Park, Y. C.; Lee, Y. S.; Ahn, B. T.; Kang, K. Flexible energy storage devices based on graphene paper. Energy Environ. Sci. 2011, 4, 1277–1283.

[2]

Wang, X. G.; Li, Q. C.; Zhang, L.; Hu, Z. L.; Yu, L. H.; Jiang, T.; Lu, C.; Yan, C. L.; Sun, J. Y.; Liu, Z. F. Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv. Mater. 2018, 30, 1800963.

[3]

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

[4]

Anothumakkool, B.; Wiemers-Meyer, S.; Guyomard, D.; Winter, M.; Brousse, T.; Gaubicher, J. Cascade-type prelithiation approach for Li-ion capacitors. Adv. Energy Mater. 2019, 9, 1900078.

[5]

Chang, X. Q.; Huang, T. Y.; Yu, J. Y.; Li, J. B.; Wang, J.; Wei, Q. L. Pseudocapacitive anode materials toward high-power sodium-ion capacitors. Batt. Super. 2021, 4, 1567–1587.

[6]

Wei, Q. L.; DeBlock, R. H.; Butts, D. M.; Choi, C.; Dunn, B. Pseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ. Mater. 2020, 3, 221–234.

[7]

Li, J. B.; Ding, Z. B.; Li, J. L.; Wang, C. Y.; Pan, L. K.; Wang, G. X. Synergistic coupling of NiS1.03 nanoparticle with S-doped reduced graphene oxide for enhanced lithium and sodium storage. Chem. Eng. J. 2021, 407, 127199.

[8]

Li, J. B.; Ding, Z. B.; Pan, L. K.; Li, J. L.; Wang, C. Y.; Wang, G. X. Facile self-templating synthesis of layered carbon with N, S dual doping for highly efficient sodium storage. Carbon 2021, 173, 31–40.

[9]

Jana, M.; Park, J. M.; Kota, M.; Shin, K. H.; Rana, H. H.; Nakhanivej, P.; Huang, J. Q.; Park, H. S. Surface redox-active organosulfur-tethered carbon nanotubes for high power and long cyclability of Na-organosulfur hybrid energy storage. ACS Energy Lett. 2021, 6, 280–289.

[10]

Hou, R. Z.; Gund, G. S.; Qi, K.; Nakhanivej, P.; Liu, H. F.; Li, F.; Xia, B. Y.; Park, H. S. Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Mater. 2019, 19, 212–241.

[11]

Ajuria, J.; Redondo, E.; Arnaiz, M.; Mysyk, R.; Rojo, T.; Goikolea, E. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. J. Power Sources 2017, 359, 17–26.

[12]

Aravindan, V.; Ulaganathan, M.; Madhavi, S. Research progress in Na-ion capacitors. J. Mater. Chem. A 2016, 4, 7538–7548.

[13]

Amin, K.; Meng, Q. H.; Ahmad, A.; Cheng, M.; Zhang, M.; Mao, L. J.; Lu, K.; Wei, Z. X. A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries. Adv. Mater. 2018, 30, 1703868.

[14]

Ahmad, S.; Copic, D.; George, C.; De Volder, M. Hierarchical assemblies of carbon nanotubes for ultraflexible Li-ion batteries. Adv. Mater. 2016, 28, 6705–6710.

[15]

Wang, C.; Wang, F. X.; Liu, Z. C.; Zhao, Y. J.; Liu, Y.; Yue, Q.; Zhu, H. W.; Deng, Y. H.; Wu, Y. P.; Zhao, D. Y. N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy 2017, 41, 674–680.

[16]

Zhu, Y. H.; Yang, X. Y.; Liu, T.; Zhang, X. B. Flexible 1D batteries: Recent progress and prospects. Adv. Mater. 2020, 32, 1901961.

[17]

Wu, Z. P.; Wang, Y. L.; Liu, X. B.; Lv, C.; Li, Y. S.; Wei, D.; Liu, Z. F. Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv. Mater. 2019, 31, 1800716.

[18]

Que, L. F.; Yu, F. D.; Wang, Z. B.; Gu, D. M. Pseudocapacitance of TiO2−x/CNT anodes for high-performance quasi-solid-state Li-ion and Na-ion capacitors. Small 2018, 14, 1704508.

[19]

Zhao, Q. L.; Yang, D. F.; Zhang, C.; Liu, X. H.; Fan, X.; Whittaker, A. K.; Zhao, X. S. Tailored polyimide-graphene nanocomposite as negative electrode and reduced graphene oxide as positive electrode for flexible hybrid sodium-ion capacitors. ACS Appl. Mater. Interfaces 2018, 10, 43730–43739.

[20]

Yang, J.; Bao, W. Z.; Jaumaux, P.; Zhang, S. T.; Wang, C. Y.; Wang, G. X. MXene-based composites: Synthesis and applications in rechargeable batteries and supercapacitors. Adv. Mater. Interfaces 2019, 6, 1802004.

[21]

Wyatt, B. C.; Rosenkranz, A.; Anasori, B. 2D MXenes: Tunable mechanical and tribological properties. Adv. Mater. 2021, 33, 2007973.

[22]

Zhang, C. F. Interfacial assembly of two-dimensional MXenes. J. Energy Chem. 2021, 60, 417–434.

[23]

Zhao, S. Q.; Guo, Z. Q.; Yang, J.; Wang, C. Y.; Sun, B.; Wang, G. X. Nanoengineering of advanced carbon materials for sodium-ion batteries. Small 2021, 2007431.

[24]

Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources 2016, 306, 510–515.

[25]

Ma, C.; Ma, M. G.; Si, C. L.; Ji, X. X.; Wan, P. B. Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 2021, 31, 2009524.

[26]

Zhang, H. N.; Ren, M. X.; Jiang, W.; Yao, J.; Pan, L. M.; Yang, J. Hierarchical Sb2S3@m-Ti3C2Tx composite anode with enhanced Na-ion storage properties. J. Alloys Compd. 2021, 887, 161318.

[27]

Ren, M. X.; Cao, D.; Jiang, W.; Su, K.; Pan, L. M.; Jiang, Y. H.; Yan, S. S.; Qiu, T.; Yang, M.; Yang, J. et al. Hierarchical composite of Sb2S3 decorated on highly crumpled Ti3C2Tx nanosheets for enhanced sodium storage properties. Electrochim. Acta 2021, 373, 137835.

[28]

He, F. Y.; Tang, C.; Zhu, G. J.; Liu, Y. D.; Du, A. J.; Zhang, Q. B.; Wu, M. H.; Zhang, H. J. Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage. Sci. China Chem. 2021, 64, 964–973.

[29]

Wang, T. H.; Shen, D. Y.; Liu, H.; Chen, H. Y.; Liu, Q. H.; Lu, B. G. A Sb2S3 nanoflower/MXene composite as an anode for potassium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 57907–57915.

[30]

Guo, X.; Xie, X. Q.; Choi, S.; Zhao, Y. F.; Liu, H.; Wang, C. Y.; Chang, S.; Wang, G. X. Sb2O3/MXene(Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 12445–12452.

[31]

Song, J. J.; Guo, X.; Zhang, J. Q.; Chen, Y.; Zhang, C. Y.; Luo, L. Q.; Wang, F. Y.; Wang, G. X. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 6507–6513.

[32]

Guo, X.; Zhang, J. Q.; Song, J. J.; Wu, W. J.; Liu, H.; Wang, G. X. MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 2018, 14, 306–313.

[33]

Sun, N.; Guan, Z. R. X.; Zhu, Q. Z.; Anasori, B.; Gogotsi, Y.; Xu, B. Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 2020, 12, 89.

[34]

Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

[35]

Xiong, X. H.; Wang, G. H.; Lin, Y. W.; Wang, Y.; Ou, X.; Zheng, F. H.; Yang, C. H.; Wang, J. H.; Liu, M. L. Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 2016, 10, 10953–10959.

[36]

Perera, S. D.; Mariano, R. G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K. J. Jr. Jr. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012, 2, 949–956.

[37]

Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Maleski, K.; Ren, C. E.; Li, J. W.; Byles, B. W.; Pomerantseva, E.; Wang, G. X.; Gogotsi, Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513–523.

[38]

Yao, S. S.; Cui, J.; Lu, Z. H.; Xu, Z. L.; Qin, L.; Huang, J. Q.; Sadighi, Z.; Ciucci, F.; Kim, J. K. Unveiling the unique phase transformation behavior and sodiation kinetics of 1D van der Waals Sb2S3 anodes for sodium ion batteries. Adv. Energy Mater. 2017, 7, 1602149.

[39]

Zhao, Y. B.; Manthiram, A. Amorphous Sb2S3 embedded in graphite: A high-rate, long-life anode material for sodium-ion batteries. Chem. Commun. 2015, 51, 13205–13208.

[40]

Dong, S. H.; Li, C. X.; Ge, X. L.; Li, Z. Q.; Miao, X. G.; Yin, L. W. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 2017, 11, 6474–6482.

[41]

Ji, L. W.; Gu, M.; Shao, Y. Y.; Li, X. L.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z. M.; Xiao, J.; Wang, C. M. et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 2014, 26, 2901–2908.

[42]

Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.

[43]

Zhang, J.; Wang, D. W.; Lv, W.; Zhang, S. W.; Liang, Q. H.; Zheng, D. Q.; Kang, F. Y.; Yang, Q. H. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 2017, 10, 370–376.

[44]

Yang, J.; Li, J. B.; Wang, T. Y.; Notten, P. H. L.; Ma, H.; Liu, Z. G.; Wang, C. Y.; Wang, G. X. Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries. Chem. Eng. J. 2021, 407, 127169.

[45]

Huang, S. B.; Hsieh, Y. Y.; Chen, K. T.; Tuan, H. Y. Flexible nanostructured potassium-ion batteries. Chem. Eng. J. 2021, 416, 127697.

[46]

Tang, X.; Liu, H.; Guo, X.; Wang, S. J.; Wu, W. J.; Mondal, A. K.; Wang, C. Y.; Wang, G. X. A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe2O3 nanosphere anode and a 3D nitrogen Sulphur dual-doped porous carbon cathode. Mater. Chem. Front. 2018, 2, 1811–1821.

[47]

Hong, W. W.; Wang, A. N.; Li, L.; Qiu, T. Y.; Li, J. Y.; Jiang, Y. L.; Zou, G. Q.; Peng, H. J.; Hou, H. S.; Ji, X. B. Bi dots confined by functional carbon as high-performance anode for lithium ion batteries. Adv. Funct. Mater. 2021, 31, 2000756.

[48]

Zhang, Y.; Zhao, G. G.; Ge, P.; Wu, T. J.; Li, L.; Cai, P.; Liu, C.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Bi2MoO6 microsphere with double-polyaniline layers toward ultrastable lithium energy storage by reinforced structure. Inorg. Chem. 2019, 58, 6410–6421.

[49]

Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

[50]

Zhu, Z. Y.; Liang, F.; Zhou, Z. R.; Zeng, X. Y.; Wang, D.; Dong, P.; Zhao, J. B.; Sun, S. G.; Zhang, Y. J.; Li, X. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J. Mater. Chem. A 2018, 6, 1513–1522.

[51]

Li, Y. M.; Hu, Y. S.; Titirici, M. M.; Chen, L. Q.; Huang, X. J. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659.

[52]

Bodenes, L.; Darwiche, A.; Monconduit, L.; Martinez, H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J. Power Sources 2015, 273, 14–24.

[53]

Wang, C. C.; Wang, L. B.; Li, F. J.; Cheng, F. Y.; Chen, J. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv. Mater. 2017, 29, 1702212.

[54]

Lu, H. Y.; Wu, L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Investigation of the effect of fluoroethylene carbonate additive on electrochemical performance of Sb-based anode for sodium-ion batteries. Electrochim. Acta 2016, 190, 402–408.

[55]

Bao, W. Z.; Shuck, C. E.; Zhang, W. X.; Guo, X.; Gogotsi, Y.; Wang, G. X. Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 2019, 13, 11500–11509.

[56]

Košir, U.; Cigić, I. K.; Markelj, J.; Talian, S. D.; Dominko, R. Polysulfide species in various electrolytes of Li-S batteries—A chromatographic investigation. Electrochim. Acta 2020, 363, 137227.

[57]

Zhao, X.; Cai, W.; Yang, Y.; Song, X. D.; Neale, Z.; Wang, H. E.; Sui, J. H.; Cao, G. Z. MoSe2 nanosheets perpendicularly grown on graphene with Mo-C bonding for sodium-ion capacitors. Nano Energy 2018, 47, 224–234.

[58]

Li, Y. Z.; Wang, H. W.; Huang, B. J.; Wang, L. B.; Wang, R.; He, B. B.; Gong, Y. S.; Hu, X. L. Mo2C-induced solid-phase synthesis of ultrathin MoS2 nanosheet arrays on bagasse-derived porous carbon frameworks for high-energy hybrid sodium-ion capacitors. J. Mater. Chem. A 2018, 6, 14742–14751.

[59]

Dong, S. Y.; Shen, L. F.; Li, H. S.; Pang, G.; Dou, H.; Zhang, X. G. Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv. Funct. Mater. 2016, 26, 3703–3710.

[60]

Zhao, X.; Zhao, Y. D.; Liu, Z. H.; Yang, Y.; Sui, J. H.; Wang, H. E.; Cai, W.; Cao, G. Z. Synergistic coupling of lamellar MoSe2 and SnO2 nanoparticles via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chem. Eng. J. 2018, 354, 1164–1173.

[61]

Liu, S. N.; Luo, Z. G.; Tian, G. Y.; Zhu, M. N.; Cai, Z. Y.; Pan, A. Q.; Liang, S. Q. TiO2 nanorods grown on carbon fiber cloth as binder-free electrode for sodium-ion batteries and flexible sodium-ion capacitors. J. Power Sources 2017, 363, 284–290.

[62]

Que, L. F.; Yu, F. D.; He, K. W.; Wang, Z. B.; Gu, D. M. Robust and conductive Na2Ti2O5−x nanowire arrays for high-performance flexible sodium-ion capacitor. Chem. Mater. 2017, 29, 9133–9141.

File
12274_2021_3933_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 August 2021
Revised: 20 September 2021
Accepted: 12 October 2021
Published: 03 November 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

C. Y. W. appreciates the support from a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. G. X. W. and X. G. would like to acknowledge the support by the Australian Research Council (ARC) through the ARC Research Hub for Integrated Energy Storage Solutions (No. IH180100020).

Return