Journal Home > Volume 15 , Issue 4

Electrochemical upgrading of biomass ethanol to value-added chemicals is promising for sustainable society. Here, we synthesize defective Ni3S2 nanowires (NWs), which show high activity towards electrochemical oxidation of ethanol to acetate. The Ni3S2 NWs are formed by the oriented attachment mechanism, and rich defects are introduced during the growth. A low onset potential of 1.31 V and high mass activity of 8,716 mA·mgNi−1 at 1.5 V are achieved using the synthesized Ni3S2 NWs toward the ethanol electro-oxidation, which are better than the Ni(OH)2 NWs and the Ni3S2 nanoparticles (NPs). And the selectivity for the acetate generation is ca. 99%. The high activity of Ni3S2 NWs is attributed to the easier oxidation of Ni(II) to the catalytically active Ni(III) species with the promotion from S component and rich defects. These results demonstrate that the defective NWs can be synthesized by the oriented attachment method and the defective Ni3S2 NWs structure as the efficient non-noble metal electrocatalysts for oxidative upgrading of ethanol.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Defective Ni3S2 nanowires as highly active electrocatalysts for ethanol oxidative upgrading

Show Author's information Yufeng Zhang1Wei Zhu1( )Jinjie Fang1Zhiyuan Xu1Yanrong Xue1Di Liu1Rui Sui1Qingqing Lv1Xuerui Liu1Yongsheng Wang1Wei Chen2( )Zhongbin Zhuang1,3( )
State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Electrochemical upgrading of biomass ethanol to value-added chemicals is promising for sustainable society. Here, we synthesize defective Ni3S2 nanowires (NWs), which show high activity towards electrochemical oxidation of ethanol to acetate. The Ni3S2 NWs are formed by the oriented attachment mechanism, and rich defects are introduced during the growth. A low onset potential of 1.31 V and high mass activity of 8,716 mA·mgNi−1 at 1.5 V are achieved using the synthesized Ni3S2 NWs toward the ethanol electro-oxidation, which are better than the Ni(OH)2 NWs and the Ni3S2 nanoparticles (NPs). And the selectivity for the acetate generation is ca. 99%. The high activity of Ni3S2 NWs is attributed to the easier oxidation of Ni(II) to the catalytically active Ni(III) species with the promotion from S component and rich defects. These results demonstrate that the defective NWs can be synthesized by the oriented attachment method and the defective Ni3S2 NWs structure as the efficient non-noble metal electrocatalysts for oxidative upgrading of ethanol.

Keywords: ethanol oxidation, oriented attachment, defects, electrocatalyst, nickel sulfide

References(63)

1

Huber, G. W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098.

2

Saidur, R.; Abdelaziz, E. A.; Demirbas, A.; Hossain, M. S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sust. Energy Rev. 2011, 15, 2262–2289.

3

Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411–2502.

4

Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science 2012, 337, 695–699.

5

Han, Y. H.; Wang, Y. G.; Chen, W. X.; Xu, R. R.; Zheng, L. R.; Zhang, J.; Luo, J.; Shen, R. A.; Zhu, Y. Q.; Cheong, W. C. et al. Hollow n-doped carbon spheres with isolated cobalt single atomic sites: Superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2017, 139, 17269–17272.

6

Han, Y. H.; Dai, J.; Xu, R. R.; Ai, W. Y.; Zheng, L. R.; Wang, Y.; Yan, W. S.; Chen, W. X.; Luo, J.; Liu, Q. et al. Notched-polyoxometalate strategy to fabricate atomically dispersed Ru catalysts for biomass conversion. ACS Catal. 2021, 11, 2669–2675.

7

Akhade, S. A.; Singh, N.; Gutiérrez, O. Y.; Lopez-Ruiz, J.; Wang, H. M.; Holladay, J. D.; Liu, Y.; Karkamkar, A.; Weber, R. S.; Padmaperuma, A. B. et al. Electrocatalytic hydrogenation of biomass-derived organics: A review. Chem. Rev. 2020, 120, 11370–11419.

8

Li, K.; Sun, Y. J. Electrocatalytic upgrading of biomass-derived intermediate compounds to value-added products. Chem. −Eur. J. 2018, 24, 18258–18270.

9

Cui, T. T.; Ma, L. N.; Wang, S. B.; Ye, C. L.; Liang, X.; Zhang, Z. D.; Meng, G.; Zheng, L. R.; Hu, H. S.; Zhang, J. W. et al. Atomically dispersed Pt–N3C1 sites enabling efficient and selective electrocatalytic C–C bond cleavage in lignin models under ambient conditions. J. Am. Chem. Soc. 2021, 143, 9429–9439.

10

Carneiro, J.; Nikolla, E. Electrochemical conversion of biomass-based oxygenated compounds. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 85–104.

11

Lin, Y.; Tanaka, S. Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627–642.

12

Chen, L. S.; Shi, J. L. Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER). J. Mater. Chem. A 2018, 6, 13538–13548.

13

Sun, J. M.; Wang, Y. Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal. 2014, 4, 1078–1090.

14

Bartowsky, E. J.; Henschke, P. A. Acetic acid bacteria spoilage of bottled red wine-a review. Int. J. Food Microbiol. 2008, 125, 60–70.

15

Raspor, P.; Goranovič, D. Biotechnological applications of acetic acid bacteria. Crit. Rev. Biotechnol. 2008, 28, 101–124.

16

Haynes, A. Catalytic methanol carbonylation. Adv. Catal. 2010, 53, 1–45.

17

Haynes, A.; Maitlis, P. M.; Morris, G. E.; Sunley, G. J.; Adams, H.; Badger, P. W.; Bowers, C. M.; Cook, D. B.; Elliott, P. I. P.; Ghaffar, T. et al. Promotion of iridium-catalyzed methanol carbonylation: Mechanistic studies of the cativa process. J. Am. Chem. Soc. 2004, 126, 2847–2861.

18

Ren, Z.; Lyu, Y.; Song, X. G.; Ding, Y. J. Review of heterogeneous methanol carbonylation to acetyl species. Appl. Catal. A 2020, 595, 117488.

19

Mao, J. J.; Chen, Y. J.; Pei, J. J.; Wang, D. S.; Li, Y. D. Pt-M (M = Cu, Fe, Zn, etc.) bimetallic nanomaterials with abundant surface defects and robust catalytic properties. Chem. Commun. 2016, 52, 5985–5988.

20

Yuan, X. L.; Jiang, B.; Cao, M. H.; Zhang, C. Y.; Liu, X. Z.; Zhang, Q. H.; Lyu, F.; Gu, L.; Zhang, Q. Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Res. 2020, 13, 265–272.

21

Shao, M. H.; Adzic, R. R. Electrooxidation of ethanol on a Pt electrode in acid solutions: In situ atr-seiras study. Electrochim. Acta 2005, 50, 2415–2422.

22

Wang, J.; Zhang, J.; Liu, G. G.; Ling, C. Y.; Chen, B.; Huang, J. T.; Liu, X. Z.; Li, B.; Wang, A. L.; Hu, Z. N. et al. Crystal phase-controlled growth of PtCu and PtCo alloys on 4H Au nanoribbons for electrocatalytic ethanol oxidation reaction. Nano Res. 2020, 13, 1970–1975.

23

Wu, J. J.; Hou, Y. L.; Gao, S. Controlled synthesis and multifunctional properties of FePt−Au heterostructures. Nano Res. 2011, 4, 836–848.

24

Wu, X. Q.; He, J. X.; Zhang, M.; Liu, Z. R.; Zhang, S.; Zhao, Y.; Li, T.; Zhang, F. P.; Peng, Z.; Cheng, N. Y. et al. Binary Pd/amorphous-SrRuO3 hybrid film for high stability and fast activity recovery ethanol oxidation electrocatalysis. Nano Energy 2020, 67, 104247.

25

Lu, Y.; Wang, W.; Chen, X. W.; Zhang, Y. H.; Han, Y. C.; Cheng, Y.; Chen, X. J.; Liu, K.; Wang, Y. Y.; Zhang, Q. B. et al. Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation. Nano Res. 2019, 12, 651–657.

26

Qiu, Y. J.; Zhang, J.; Jin, J.; Sun, J. Q.; Tang, H. L.; Chen, Q. Q.; Zhang, Z. D.; Sun, W. M.; Meng, G.; Xu, Q. et al. Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction. Nat. Commun. 2021, 12, 5273.

27

Mao, J. J.; Liu, Y. X.; Chen, Z.; Wang, D. S.; Li, Y. D. Bimetallic Pd-Cu nanocrystals and their tunable catalytic properties. Chem. Commun. 2014, 50, 4588–4591.

28

Flórez-Montaño, J.; García, G.; Guillén-Villafuerte, O.; Rodríguez, J. L.; Planes, G. A.; Pastor, E. Mechanism of ethanol electrooxidation on mesoporous Pt electrode in acidic medium studied by a novel electrochemical mass spectrometry set-up. Electrochim. Acta 2016, 209, 121–131.

29

Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325–30.

30

Gao, F.; Zhang, Y. P.; Ren, F. F.; Shiraishi, Y.; Du, Y. K. Universal surfactant-free strategy for self-standing 3D tremella-like Pd-M (M = Ag, Pb, and Au) nanosheets for superior alcohols electrocatalysis. Adv. Funct. Mater. 2020, 30, 2000255.

31

Valério Neto, E. S.; Gomes, M. A.; Salazar-Banda, G. R.; Eguiluz, K. I. B. Pt and Pt-Rh nanowires supported on carbon and SnO2: Sb nanoparticles for ethanol electrochemical oxidation in acidic media. Int. J. Hydrog. Energy 2018, 43, 178–188.

32

Zhu, W.; Ke, J.; Wang, S. B.; Ren, J.; Wang, H. H.; Zhou, Z. Y.; Si, R.; Zhang, Y. W.; Yan, C. H. Shaping single-crystalline trimetallic Pt-Pd-Rh nanocrystals toward high-efficiency C−C splitting of ethanol in conversion to CO2. ACS Catal. 2015, 5, 1995–2008.

33

Hassan, H. B.; Hamid, Z. A. Electrodeposited Ni-Cr2O3 nanocomposite anodes for ethanol electrooxidation. Int. J. Hydrog. Energy 2011, 36, 5117–5127.

34

Lidasan, J. J. B.; del Rosario, J. A. D.; Ocon, J. D. Ethanol electrooxidation on phase- and morphology-controlled Ni(OH)2 microspheres. Catalysts 2020, 10, 740.

35

Trafela, Š.; Zavašnik, J.; Šturm, S.; Žužek Rožman, K. Controllable voltammetric formation of a structurally disordered NiOOH/Ni(OH)2 redox pair on Ni-nanowire electrodes for enhanced electrocatalytic formaldehyde oxidation. Electrochim. Acta 2020, 362, 137180.

36

Chen, W.; Xie, C.; Wang, Y. Y.; Zou, Y. Q.; Dong, C. L.; Huang, Y. C.; Xiao, Z. H.; Wei, Z. X.; Du, S. Q.; Chen, C. et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 2020, 6, 2974–2993.

37

Sau, T. K.; Rogach, A. L.; Jäckel, F.; Klar, T. A.; Feldmann, J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 2010, 22, 1805–1825.

38

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

39

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

40

Chen, L. G.; Liang, X.; Li, X. T.; Pei, J. J.; Lin, H.; Jia, D. Z.; Chen, W. X.; Wang, D. S.; Li, Y. D. Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification. Nano Energy 2020, 73, 104784.

41
Li, L. G.; Wang, P. T.; Cheng, Z. F.; Shao, Q.; Huang, X. Q. One-dimensional iridium-based nanowires for efficient water electrooxidation and beyond. Nano Res., in press, https://doi.org/10.1007/s12274-021-3603-9 .
42

Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2018, 2, 0105.

43

Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M. C.; Guo, S. J. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 2016, 28, 10117–10141.

44

Jia, Y.; Jiang, K.; Wang, H. T.; Yao, X. D. The role of defect sites in nanomaterials for electrocatalytic energy conversion. Chem 2019, 5, 1371–1397.

45

Wang, Q. C.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730–1750.

46

Zhang, Y. Q.; Guo, L.; Tao, L.; Lu, Y. B.; Wang, S. Y. Defect-based single-atom electrocatalysts. Small Methods 2019, 3, 1800406.

47

Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

48

Wang, Q. C.; Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Zeng, J.; Song, Y. H.; Duan, X. D.; Wang, D. S.; Li, Y. D. Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy Environ. Sci. 2020, 13, 1593–1616.

49

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

50
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, https: //doi.org/10.1007/s12274-021-3794-0.
51

Zhuang, Z. B.; Lu, X. T.; Peng, Q.; Li, Y. D. A facile "dispersion-decomposition" route to metal sulfide nanocrystals. Chem. −Eur. J. 2011, 17, 10445–10452.

52

Calderón, M. F.; Zelaya, E.; Benitez, G. A.; Schilardi, P. L.; Creus, A. H.; Orive, A. G.; Salvarezza, R. C.; Ibañez, F. J. New findings for the composition and structure of Ni nanoparticles protected with organomercaptan molecules. Langmuir 2013, 29, 4670–4678.

53

Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287.

54

Zhang, J.; Huang, F.; Lin, Z. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2010, 2, 18–34.

55

Zhang, Q.; Liu, S. J.; Yu, S. H. Recent advances in oriented attachment growth and synthesis of functional materials: Concept, evidence, mechanism, and future. J. Mater. Chem. 2009, 19, 191–207.

56

Lv, W. Q.; He, W. D.; Wang, X. N.; Niu, Y. H.; Cao, H. Q.; Dickerson, J. H.; Wang, Z. G. Understanding the oriented-attachment growth of nanocrystals from an energy point of view: A review. Nanoscale 2014, 6, 2531–2547.

57

Stevens, M. B.; Enman, L. J.; Batchellor, A. S.; Cosby, M. R.; Vise, A. E.; Trang, C. D. M.; Boettcher, S. W. Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts. Chem. Mater. 2017, 29, 120–140.

58

Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y. C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C. et al. Unveiling the electrooxidation of urea: Intramolecular coupling of the N−N bond. Angew. Chem., Int. Ed. 2021, 60, 7297–7307.

59

Cuña, A.; Reyes Plascencia, C.; da Silva, E. L.; Marcuzzo, J.; Khan, S.; Tancredi, N.; Baldan, M. R. de Fraga Malfatti, C. Electrochemical and spectroelectrochemical analyses of hydrothermal carbon supported nickel electrocatalyst for ethanol electro-oxidation in alkaline medium. Appl. Catal. B:Environ. 2017, 202, 95–103.

60

Zhu, C.; Lan, B.; Wei, R. L.; Wang, C. N.; Yang, Y. Y. Potential-dependent selectivity of ethanol complete oxidation on Rh electrode in alkaline media: A synergistic study of electrochemical ATR-SEIRAS and IRAS. ACS Catal. 2019, 9, 4046–4053.

61

Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921.

62

Li, J. R.; Jilani, S. Z.; Lin, H. H.; Liu, X. M.; Wei, K. C.; Jia, Y. K.; Zhang, P.; Chi, M. F.; Tong, Y. J.; Xi, Z. et al. Ternary CoPtAu nanoparticles as a general catalyst for highly efficient electro-oxidation of liquid fuels. Angew. Chem., Int. Ed. 2019, 58, 11527–11533.

63

Ma, L. Y.; Kong, W. H.; Liu, M. L.; Jin, Z. Y.; Han, Y. Q.; Sun, J.; Liu, J.; Xu, Y. H.; Li, J. H. Sulfur defect-rich WS2−x nanosheet electrocatalysts for N2 reduction. Sci. China Mater. 2021, 64, 1910–1918.

File
12274_2021_3930_MOESM1_ESM.pdf (894.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 September 2021
Revised: 10 October 2021
Accepted: 11 October 2021
Published: 04 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21971008) and the Fundamental Research Funds for the Central Universities (buctrc201916, buctrc201823).

Return