Journal Home > Volume 15 , Issue 4

Towards bottlenecks demonstrated by typical Fenton-like catalysts in advanced oxidation processes (AOPs) for wastewater treatment, novel hierarchical porous Mn2+Mn63+SiO12 (Mn7SiO12, MSO-12) microspheres (specific surface area: 434.90 m2·g−1, pore volume: 0.78 cm3·g−1) were rationally designed and achieved via a simple one-pot hydrothermal method (150 °C and 12.0 h) without any pre-prepared templates or organic solvents, by using abundant MnCl2·4H2O and Na2SiO3·9H2O as the basic raw materials. The MSO-12 microspheres are confirmed as high-efficiency Fenton-like catalysts for degradation of organic dyes (methylene blue (MeB), Rhodamine B (RhB), and methyl blue (MB)) in the presence of H2O2, with impressively high specific consumption amount of MeB (R = 12.35 mg·g−1·min−1) and extremely low leaching of Mn (Mnloss% = 0.27%). Simultaneously, the synergetic effect of adsorption and degradation on the superior removal of MeB is uncovered. The excellent recycling performances, especially the satisfactory removal of MeB from the actual water bodies (e.g., tap water and river water), as well as potential applications for degradation of RhB and MB enable the MSO-12 microspheres as a novel promising competitive candidate Fenton-like catalyst.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-pot hydrothermal synthesis of hierarchical porous manganese silicate microspheres as excellent Fenton-like catalysts for organic dyes degradation

Show Author's information Yuyu ZhengLihua WangLiyun ZhangHeng ZhangWancheng Zhu( )
Department of Chemical Engineering, Qufu Normal University, Qufu 273165, China

Abstract

Towards bottlenecks demonstrated by typical Fenton-like catalysts in advanced oxidation processes (AOPs) for wastewater treatment, novel hierarchical porous Mn2+Mn63+SiO12 (Mn7SiO12, MSO-12) microspheres (specific surface area: 434.90 m2·g−1, pore volume: 0.78 cm3·g−1) were rationally designed and achieved via a simple one-pot hydrothermal method (150 °C and 12.0 h) without any pre-prepared templates or organic solvents, by using abundant MnCl2·4H2O and Na2SiO3·9H2O as the basic raw materials. The MSO-12 microspheres are confirmed as high-efficiency Fenton-like catalysts for degradation of organic dyes (methylene blue (MeB), Rhodamine B (RhB), and methyl blue (MB)) in the presence of H2O2, with impressively high specific consumption amount of MeB (R = 12.35 mg·g−1·min−1) and extremely low leaching of Mn (Mnloss% = 0.27%). Simultaneously, the synergetic effect of adsorption and degradation on the superior removal of MeB is uncovered. The excellent recycling performances, especially the satisfactory removal of MeB from the actual water bodies (e.g., tap water and river water), as well as potential applications for degradation of RhB and MB enable the MSO-12 microspheres as a novel promising competitive candidate Fenton-like catalyst.

Keywords: microspheres, degradation, organic dyes, hierarchical porous, manganese silicate, Fenton-like catalysts

References(53)

1

Zhu, Y. P.; Zhu, R. L.; Xi, Y. F.; Zhu, J. X.; Zhu, G. Q.; He, H. P. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B: -Environ. 2019, 255, 117739.

2

Zhang, L. L.; Meng, G.; Fan, G. F.; Chen, K. L.; Wu, Y. L.; Liu, J. High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Res. 2021, 14, 2568–2573.

3

Feng, Y. W.; Han, K.; Jiang, T.; Bian, Z. F.; Liang, X.; Cao, X.; Li, H. X.; Wang, Z. L. Self-powered electrochemical system by combining Fenton reaction and active chlorine generation for organic contaminant treatment. Nano Res. 2019, 12, 2729–2735.

4

Mushtaq, F.; Chen, X. Z.; Torlakcik, H.; Nelson, B. J.; Pané, S. Enhanced catalytic degradation of organic pollutants by multi-stimuli activated multiferroic nanoarchitectures. Nano Res. 2020, 13, 2183–2191.

5

Sekar, S.; Surianarayanan, M.; Ranganathan, V.; MacFarlane, D. R.; Mandal, A. B. Choline-based ionic liquids-enhanced biodegradation of azo dyes. Environ. Sci. Technol. 2012, 46, 4902–4908.

6

Verma, A. K.; Dash, R. R.; Bhunia, P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage. 2012, 93, 154–168.

7

Hu, E. L.; Wu, X. B.; Shang, S. M.; Tao, X. M.; Jiang, S. X.; Gan, L. Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J. Clean. Prod. 2016, 112, 4710–4718.

8

Sun, C.; Yang, S. T.; Gao, Z. J.; Yang, S. N.; Yilihamu, A.; Ma, Q.; Zhao, R. S.; Xue, F. M. Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue. Mater. Chem. Phys. 2019, 223, 751–757.

9

Xu, L.; Sun, P. P.; Jiang, X. Z.; Chen, J. X.; Wang, J. Y.; Zhang, H.; Zhu, W. C. Hierarchical quasi waxberry-like Ba5Si8O21 microspheres: Facile green rotating hydrothermal synthesis, formation mechanism and high adsorption performance for Congo red. Chem. Eng. J. 2020, 384, 123387.

10

Bokare, A. D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135.

11

Hao, S. M.; Qu, J.; Zhu, Z. S.; Zhang, X. Y.; Wang, Q. Q.; Yu, Z. Z. Hollow manganese silicate nanotubes with tunable secondary nanostructures as excellent Fenton-type catalysts for dye decomposition at ambient temperature. Adv. Funct. Mater. 2016, 26, 7334–7342.

12

Tušar, N. N.; Maučec, D.; Rangus, M.; Arčon, I.; Mazaj, M.; Cotman, M.; Pintar, A.; Kaučič, V. Manganese functionalized silicate nanoparticles as a Fenton-type catalyst for water purification by advanced oxidation processes (AOP). Adv. Funct. Mater. 2012, 22, 820–826.

13

Huang, R. T.; Liu, Y. Y.; Chen, Z. W.; Pan, D. Y.; Li, Z.; Wu, M. H.; Shek, C. H.; Wu, C. M. L.; Lai, J. K. L. Fe-species-loaded mesoporous MnO2 superstructural requirements for enhanced catalysis. ACS Appl. Mater. Interfaces 2015, 7, 3949–3959.

14

Li, Y. Q.; Qu, J. Y.; Gao, F.; Lv, S. Y.; Shi, L.; He, C. X.; Sun, J. C. In situ fabrication of Mn3O4 decorated graphene oxide as a synergistic catalyst for degradation of methylene blue. Appl. Catal. B:Environ. 2015, 162, 268–274.

15

Qu, J. Y.; Shi, L.; He, C. X.; Gao, F.; Li, B. B.; Zhou, Q.; Hu, H.; Shao, G. H.; Wang, X. Z.; Qiu, J. S. Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue. Carbon 2014, 66, 485–492.

16

Ding, B. B.; Zheng, P.; Ma, P. A.; Lin, J. Manganese oxide nanomaterials: Synthesis, properties, and theranostic applications. Adv. Mater. 2020, 32, 1905823.

17

Zhang, J. H.; Li, Y. B.; Wang, L.; Zhang, C. B.; He, H. Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. Catal. Sci. Technol. 2015, 5, 2305–2313.

18

Zhu, S. S.; Li, X. J.; Kang, J.; Duan, X. G.; Wang, S. B. Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ. Sci. Technol. 2019, 53, 307–315.

19

Saroyan, H.; Ntagiou, D.; Rekos, K.; Deliyanni, E. Reactive black 5 degradation on manganese oxides supported on sodium hydroxide modified graphene oxide. Appl. Sci. 2019, 9, 2167.

20

Wang, C. C.; Fu, J. L.; Zhang, Y.; Zhao, H.; Wei, X.; Zhang, R. J. Microhydrangeas with a high ratio of low valence MnOx are capable of extremely fast degradation of organics. Chem. Commun. 2018, 54, 7330–7333.

21

Xu, Y. L.; Ren, B.; Wang, R.; Zhang, L. H.; Jiao, T. F.; Liu, Z. F. Facile preparation of rod-like MnO nanomixtures via hydrothermal approach and highly efficient removal of methylene blue for wastewater treatment. Nanomaterials 2019, 9, 10.

22

Bai, Z. C.; Sun, B.; Fan, N.; Ju, Z. C.; Li, M. H.; Xu, L. Q.; Qian, Y. T. Branched mesoporous Mn3O4 nanorods: Facile synthesis and catalysis in the degradation of methylene blue. Chem.—Eur. J. 2012, 18, 5319–5324.

23

Rezaei, E.; Soltan, J. EXAFS and kinetic study of MnOx/γ-alumina in gas phase catalytic oxidation of toluene by ozone. Appl. Catal. B: Environ. 2014, 148–149, 70–79.

24

Wang, Q. S.; Zhang, Y. F.; Jiang, H. M.; Li, X. J.; Cheng, Y.; Meng, C. G. Designed mesoporous hollow sphere architecture metal (Mn, Co, Ni) silicate: A potential electrode material for flexible all solid-state asymmetric supercapacitor. Chem. Eng. J. 2019, 362, 818–829.

25

Zhu, W. C.; Sun, P. P.; Ran, W. G.; Zheng, Y. Y.; Wang, L. H.; Zhang, L. Y.; Jia, X. H.; Chen, J. X.; Wang, J. Y.; Zhang, H. et al. Rational design and facile hydrothermal-thermal conversion synthesis of hierarchical porous urchin-like Cu2−xSi2O5(OH)3·xH2O and CuO/SiO2 hollow microspheres for high efficiency catalytic reduction of nitroarenes and adsorption of organic dye. Chem. Eng. J. 2021, 411, 128442.

26

Xu, L.; Sun, P. P.; Chen, X. P.; Zhai, P. Y.; Zhu, W. C. Facile hydrothermal-thermal conversion synthesis of CaSiO3 nanowires as promising structure and function integrated photoluminescent host candidate. Chin. Chem. Lett. 2019, 30, 171–174.

27

Zhang, T.; Yue, Q.; Pan, P. P.; Ren, Y.; Yang, X. Y.; Cheng, X. W.; Alharthi, F. A.; Alghamdi, A. A.; Deng, Y. H. One-dimensional nanochains consisting of magnetic core and mesoporous aluminosilicate for use as efficient nanocatalysts. Nano Res. 2021, 14, 4197–4203.

28

Wang, Y. Q.; Wang, G. Z.; Wang, H. Q.; Cai, W. P.; Zhang, L. D. One-pot synthesis of nanotube-based hierarchical copper silicate hollow spheres. Chem. Commun. 2008, 48, 6555–6557.

29

Yang, Y.; Liang, Q. Q.; Li, J. H.; Zhuang, Y.; He, Y. H.; Bai, B.; Wang, X. Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Res. 2011, 4, 882–890.

30

Liu, C. H.; Wang, D. D.; Zhang, S. Y.; Cheng, Y. R.; Yang, F.; Xing, Y.; Xu, T. L.; Dong, H. F.; Zhang, X. J. Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano 2019, 13, 4267–4277.

31

Das, A. K.; Kuchi, R.; Van, P. C.; Sohn, Y.; Jeong, J. R. Development of an Fe3O4@Cu silicate based sensing platform for the electrochemical sensing of dopamine. RSC Adv. 2018, 8, 31037–31047.

32

Gao, Q.; Li, H. T.; Ling, Y.; Han, B.; Xia, K. S.; Zhou, C. G. Synthesis of MnSiO3 decorated hollow mesoporous silica spheres and its promising application in environmental remediation. Micropor. Mesopor. Mater. 2017, 241, 409–417.

33

Yec, C. C.; Zeng, H. C. Nanobubbles within a microbubble: Synthesis and self-assembly of hollow manganese silicate and its metal-doped derivatives. ACS Nano 2014, 8, 6407–6416.

34

Liu, J. Y.; Chen, T. T.; Jian, P. M.; Wang, L. X. Hierarchical hollow nickel silicate microflowers for selective oxidation of styrene. J. Colloid Interface Sci. 2019, 553, 606–612.

35

Pang, J. B.; Fu, F. L.; Li, W. B.; Zhu, L. J.; Tang, B. Fe–Mn binary oxide decorated diatomite for rapid decolorization of methylene blue with H2O2. Appl. Surf. Sci. 2019, 478, 54–61.

36

Wang, Q. S.; Zhang, Y. F.; Jiang, H. M.; Meng, C. G. In situ grown manganese silicate from biomass-derived heteroatom-doped porous carbon for supercapacitors with high performance. J. Colloid Interface Sci. 2019, 534, 142–155.

37

Bai, S. S.; Tian, G. Y.; Gong, L. L.; Tang, Q. G.; Meng, J. P.; Duan, X. H.; Liang, J. S. Mesoporous manganese silicate composite adsorbents synthesized from high-silicon iron ore tailing. Chem. Eng. Res. Des. 2020, 159, 543–554.

38

Zhang, J. Y.; Jin, M. S.; Park, Y. I.; Jin, L. Y.; Quan, B. Facile synthesis of ultra-small hollow manganese silicate nanoparticles as pH/GSH-responsive T1-MRI contrast agents. Ceram. Int. 2020, 46, 18632–18638.

39

Jiang, D. B.; Yuan, Y. S.; Zhao, D. Q.; Tao, K. M.; Xu, X.; Zhang, Y. X. Facile synthesis of three-dimensional diatomite/manganese silicate nanosheet composites for enhanced Fenton-like catalytic degradation of malachite green dye. J. Nanopart. Res. 2018, 20, 123.

40

Wang, H.; Gao, Q.; Li, H. T.; Wang, H. Q. One-step template-free synthesis of Mn(II)-doped TiO2 hierarchical microspheres with unique radiating fibrous structure for efficient Fenton degradation. Mater. Res. Bull. 2019, 118, 110508.

41

Kong, X.; Chen, A. T.; Chen, L.; Feng, L.; Wang, W. W.; Li, J.; Du, Q. Y.; Sun, W. Z.; Zhang, J. T. Enhanced Fenton-like catalytic performance of freestanding CuO nanowires by coating with g-C3N4 nanosheets. Sep. Purif. Technol. 2021, 272, 118850.

42

Islam, M. A.; Ali, I.; Karim, S. M. A.; Hossain Firoz, M. S.; Chowdhury, A. N.; Morton, D. W.; Angove, M. J. Removal of dye from polluted water using novel nano manganese oxide-based materials. J. Water Process Eng. 2019, 32, 100911.

43

Su, S. S.; Liu, Y. Y.; Liu, X. M.; Jin, W.; Zhao, Y. P. Transformation pathway and degradation mechanism of methylene blue through β-FeOOH@GO catalyzed photo-Fenton-like system. Chemosphere 2019, 218, 83–92.

44

Zhao, Y. L.; Kang, S. C.; Qin, L.; Wang, W.; Zhang, T. T.; Song, S. X.; Komarneni, S. Self-assembled gels of Fe-chitosan/ montmorillonite nanosheets: Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction. Chem. Eng. J. 2020, 379, 122322.

45

Xiang, H. L.; Ren, G. K.; Zhong, Y. J.; Xu, D. H.; Zhang, Z. Y.; Wang, X. L.; Yang, X. S. Fe3O4@C nanoparticles synthesized by in situ solid-phase method for removal of methylene blue. Nanomaterials 2021, 11, 330.

46

Wang, H.; Gao, Q.; Li, H. T.; Gao, M.; Han, B.; Xia, K. S.; Zhou, C. G. Simple and controllable synthesis of high-quality MnTiO3 nanodiscs and their application as a highly efficient catalyst for H2O2-mediated oxidative degradation. ACS Appl. Nano Mater. 2018, 1, 2727–2738.

47

Ling, Y.; Gao, Q.; Ma, C. F.; Gong, Y. S.; Bo, H.; Xia, K. S.; Zhou, C. G. A waxberry-like SiO2@MnSiO3 core-shell nanocomposite synthesized via a simple solvothermal self-template method and its potential in catalytic degradation and heavy metal ion removal. RSC Adv. 2016, 6, 23360–23369.

48

Luo, X. L.; Hu, H. T.; Pan, Z.; Pei, F.; Qian, H. M.; Miao, K. K.; Guo, S. F.; Wang, W.; Feng, G. D. Efficient and stable catalysis of hollow Cu9S5 nanospheres in the Fenton-like degradation of organic dyes. J Hazard. Mater. 2020, 396, 122735.

49

Wang, R. J.; Liu, X. Y.; Wu, R. H.; Yu, B. W.; Li, H. L.; Zhang, X. L.; Xie, J. R.; Yang, S. T. Fe3O4/SiO2/C nanocomposite as a high-performance Fenton-like catalyst in a neutral environment. RSC Adv. 2016, 6, 8594–8600.

50

Yoo, S. H.; Jang, D.; Joh, H. I.; Lee, S. Iron oxide/porous carbon as a heterogeneous Fenton catalyst for fast decomposition of hydrogen peroxide and efficient removal of methylene blue. J. Mater. Chem. A 2017, 5, 748–755.

51

Zhan, G. W.; Zeng, H. C. A synthetic protocol for preparation of binary multi-shelled hollow spheres and their enhanced oxidation application. Chem. Mater. 2017, 29, 10104–10112.

52

Sun, X. W.; Xu, D. Y.; Dai, P.; Liu, X. E.; Tan, F.; Guo, Q. J. Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe–Co bimetal-doped MCM-41 as peroxymonosulfate activator. Chem. Eng. J. 2020, 402, 125881.

53

Shao, P. H.; Tian, J. Y.; Duan, X. G.; Yang, Y.; Shi, W. X.; Luo, X. B.; Cui, F. Y.; Luo, S. L.; Wang, S. B. Cobalt silicate hydroxide nanosheets in hierarchical hollow architecture with maximized cobalt active site for catalytic oxidation. Chem. Eng. J. 2019, 359, 79–87.

File
12274_2021_3929_MOESM1_ESM.pdf (404.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 August 2021
Revised: 05 October 2021
Accepted: 08 October 2021
Published: 24 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the State Key Laboratory of Chemical Engineering (No. SKL-ChE-21A02) and State Key Laboratory of Organic-Inorganic Composites (No. oic-202101009), China. The authors also wanna thank Dr. Junfeng Chen and Prof. Renjun Wang at School of Life Science (Qufu Normal University), for the analysis on the water quality of Liao River. The authors also thank the reviewers for their constructive suggestions on the great improvement of the work.

Return