Journal Home > Volume 15 , Issue 4

Chemical vapor deposition (CVD)-grown graphene films on Cu foils, exhibiting fine scalability and high quality, are still suffering from the adverse impact of surface contamination, i.e., amorphous carbon. Despite the recent successful preparation of superclean graphene through Cu-vapor-assisted reactions, the formation mechanism of amorphous carbon remains unclear, especially with regard to the functions of substrates. Herein, we have found that the crystallographic orientations of underlying metal substrates would determine the cleanness of graphene in such a way that slower diffusion of active carbon species on as-formed graphene-Cu(100) surface is the key factor that suppresses the formation of contamination. The facile synthesis of clean graphene is achieved on the meter-sized Cu(100) that is transformed from the polycrystalline Cu foils. Furthermore, a clean surface of graphene on Cu(100) ensures the reduction of transfer-related polymer residues, and enhanced optical and electrical performance, which allows for versatile applications of graphene in biosensors, functioning as flexible transparent electrodes. This work would offer a promising material platform for the fundamental investigation and create new opportunities for the advanced applications of high-quality graphene films.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The role of Cu crystallographic orientations towards growing superclean graphene on meter-sized scale

Show Author's information Xiaoting Liu1,2,3,§Jincan Zhang1,2,3,4,§Wendong Wang5,§Wei Zhao6,§Heng Chen1,3Bingyao Liu1,2,3,7Mengqi Zhang3Fushun Liang1,3Lijuan Zhang3Rui Zhang5Ning Li3Yuexin Zhang3Yuchen Liu3Kaicheng Jia1,3Luzhao Sun1,2,3Yixuan Zhao1,3Peng Gao1,2,3,7Qinghong Yuan6,8Li Lin1,3,5,9( )Hailin Peng1,2,3( )Zhongfan Liu1,2,3( )
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
Beijing Graphene Institute, Beijing 100095, China
Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK
State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
School of Materials Science and Engineering, Peking University, Beijing 100871, China

§ Xiaoting Liu, Jincan Zhang, Wendong Wang, and Wei Zhao contributed equally to this work.

Abstract

Chemical vapor deposition (CVD)-grown graphene films on Cu foils, exhibiting fine scalability and high quality, are still suffering from the adverse impact of surface contamination, i.e., amorphous carbon. Despite the recent successful preparation of superclean graphene through Cu-vapor-assisted reactions, the formation mechanism of amorphous carbon remains unclear, especially with regard to the functions of substrates. Herein, we have found that the crystallographic orientations of underlying metal substrates would determine the cleanness of graphene in such a way that slower diffusion of active carbon species on as-formed graphene-Cu(100) surface is the key factor that suppresses the formation of contamination. The facile synthesis of clean graphene is achieved on the meter-sized Cu(100) that is transformed from the polycrystalline Cu foils. Furthermore, a clean surface of graphene on Cu(100) ensures the reduction of transfer-related polymer residues, and enhanced optical and electrical performance, which allows for versatile applications of graphene in biosensors, functioning as flexible transparent electrodes. This work would offer a promising material platform for the fundamental investigation and create new opportunities for the advanced applications of high-quality graphene films.

Keywords: superclean graphene, Cu crystallographic orientations, Cu(100) foil, improved electrical performance

References(38)

1

Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

2

Lin, L.; Peng, H. L.; Liu, Z. F. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524.

3

Liu, C.; Wang, L.; Qi, J. J.; Liu, K. H. Designed growth of large-size 2D single crystals. Adv. Mater. 2020, 32, 2000046.

4

Kong, W.; Kum, H.; Bae, S. H.; Shim, J.; Kim, H.; Kong, L. P.; Meng, Y.; Wang, K. J.; Kim, C.; Kim, J. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 2019, 14, 927–938.

5

Pulizzi, F.; Bubnova, O.; Milana, S.; Schilter, D.; Abergel, D.; Moscatelli, A. Graphene in the making. Nat. Nanotechnol. 2019, 14, 914–918.

6

Leong, W. S.; Wang, H. Z.; Yeo, J. J.; Martin-Martinez, F. J.; Zubair, A.; Shen, P. C.; Mao, Y. W.; Palacios, T.; Buehler, M. J.; Hong, J. Y. et al. Paraffin-enabled graphene transfer. Nat. Commun. 2019, 10, 867.

7

Li, Z. T.; Wang, Y. J.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.; Morganstein, B.; Kunkel, A.; Surwade, S. P. et al. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nat. Mater. 2013, 12, 925–931.

8

Jia, Y. H.; Gong, X.; Peng, P.; Wang, Z. D.; Tian, Z. Z.; Ren, L. M.; Fu, Y. Y.; Zhang, H. Toward high carrier mobility and low contact resistance: Laser cleaning of PMMA residues on graphene surfaces. Nano-Micro Lett. 2016, 8, 336–346.

9

Pettes, M. T.; Jo, I.; Yao, Z.; Shi, L. Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett. 2011, 11, 1195–1200.

10

Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.; Heidelberger, C.; Kong, W.; Choi, S. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 2017, 544, 340–343.

11

Zhang, Z. K.; Du, J. H.; Zhang, D. D.; Sun, H. D.; Yin, L. C.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 2017, 8, 14560.

12

Hong, H.; Zhang, J. C.; Zhang, J.; Qiao, R. X.; Yao, F. R.; Cheng, Y.; Wu, C. C.; Lin, L.; Jia, K. C.; Zhao, Y. C. et al. Ultrafast broadband charge collection from clean graphene/CH3NH3PbI3 interface. J. Am. Chem. Soc. 2018, 140, 14952–14957.

13

Lin L.; Zhang J. C.; Su H. S.; Li J. Y.; Sun L. Z.; Wang Z. H.; Xu F.; Liu C.; Lopatin S.; Zhu Y. H. et al. Towards super-clean graphene. Nat. Commun. 2019, 10, 1912.

14

Jia, K. C.; Zhang, J. C.; Lin, L.; Li, Z. Z.; Gao, J.; Sun, L. Z.; Xue, R. W.; Li, J. Y.; Kang, N.; Luo, Z. T. et al. Copper-containing carbon feedstock for growing superclean graphene. J. Am. Chem. Soc. 2019, 141, 7670–7674.

15

Zhang, J. C.; Jia, K. C.; Lin, L.; Zhao, W.; Quang, H. T.; Sun, L. Z.; Li, T. R.; Li, Z. Z.; Liu, X. T.; Zheng, L. M. et al. Large-area synthesis of superclean graphene via selective etching of amorphous carbon with carbon dioxide. Angew. Chem., Int. Ed. 2019, 58, 14446–14451.

16

Sun, L. Z.; Lin, L.; Wang, Z. H.; Rui, D. R.; Yu, Z. W.; Zhang, J. C.; Li, Y. L. Z.; Liu, X. T.; Jia, K. C.; Wang, K. X. et al. A force-engineered lint roller for superclean graphene. Adv. Mater. 2019, 31, 1902978.

17

Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334.

18

Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

19

Zhou, H. L.; Yu, W. J.; Liu, L. X.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013, 4, 2096.

20

Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011, 11, 4547–4554.

21

Li, B. W.; Luo, D.; Zhu, L. Y.; Zhang, X.; Jin, S.; Huang, M.; Ding, F.; Ruoff, R. S. Orientation-dependent strain relaxation and chemical functionalization of graphene on a Cu (111) foil. Adv. Mater. 2018, 30, 1706504.

22

Artyukhov, V. I.; Hao, Y. F.; Ruoff, R. S.; Yakobson, B. I. Breaking of symmetry in graphene growth on metal substrates. Phys. Rev. Lett. 2015, 114, 115502.

23

Xia, K. L.; Artyukhov, V. I.; Sun, L. F.; Zheng, J. Y.; Jiao, L. Y.; Yakobson, B. I.; Zhang, Y. Y. Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. Nano Res. 2016, 9, 2182–2189.

24

Murdock, A. T.; Koos, A.; Ben Britton, T.; Houben, L.; Batten, T.; Zhang, T.; Wilkinson, A. J.; Dunin-Borkowski, R. E.; Lekka, C. E.; Grobert, N. Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene. ACS Nano 2013, 7, 1351–1359.

25

Shu, H. B.; Tao, X. M.; Ding, F. What are the active carbon species during graphene chemical vapor deposition growth. Nanoscale 2015, 7, 1627–1634.

26

Wang, X. L.; Yuan, Q. H.; Li, J.; Ding, F. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth. Nanoscale 2017, 9, 11584–11589.

27

Zhang, W. H.; Wu, P.; Li, Z. Y.; Yang, J. L. First-principles thermodynamics of graphene growth on Cu surfaces. J. Phys. Chem. C 2011, 115, 17782–17787.

28

Wu, P.; Zhang, W. H.; Li, Z. Y.; Yang, J. L. Mechanisms of graphene growth on metal surfaces: Theoretical perspectives. Small 2014, 10, 2136–2150.

29

Zhang, J. C.; Lin, L.; Sun, L. Z.; Huang, Y. C.; Koh, A. L.; Dang, W. H.; Yin, J. B.; Wang, M. Z.; Tan, C. W.; Li, T. R. et al. Clean Transfer of large graphene single crystals for high-intactness suspended membranes and liquid cells. Adv. Mater. 2017, 29, 1700639.

30

Zhang, J. C.; Sun, L. Z.; Jia, K. C.; Liu, X. T.; Cheng, T.; Peng, H. L.; Lin, L.; Liu, Z. F. New growth frontier: Superclean graphene. ACS Nano 2020, 14, 10796–10803.

31

Dong, J. C.; Zhang, L. N.; Ding, F. Kinetics of graphene and 2D materials growth. Adv. Mater. 2019, 31, 1801583.

32

Wang, H.; Xu, X. Z.; Li, J. Y.; Lin, L.; Sun, L. Z.; Sun, X.; Zhao, S. L.; Tan, C. W.; Chen, C.; Dang, W. H. et al. Surface monocrystallization of copper foil for fast growth of large single-crystal graphene under free molecular flow. Adv. Mater. 2016, 28, 8968–8974.

33

Hu, J. X.; Xu, J. B.; Zhao, Y. F.; Shi, L.; Li, Q.; Liu, F. K.; Ullah, Z.; Li, W. W.; Guo, Y. F.; Liu, L. W. Roles of oxygen and hydrogen in crystal orientation transition of copper foils for high-quality graphene growth. Sci. Rep. 2017, 7, 45358.

34

Deck, L.; De Groot, P. High-speed noncontact profiler based on scanning white-light interferometry. Appl. Opt. 1994, 33, 7334–7338.

35

Loh, K. P.; Tong, S. W.; Wu, J. S. Graphene and graphene-like molecules: Prospects in solar cells. J. Am. Chem. Soc. 2016, 138, 1095–1102.

36

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

37

Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S. Q.; Larentis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 2016, 16, 1989–1995.

38

De Fazio, D.; Purdie, D. G.; Ott, A. K.; Braeuninger-Weimer, P.; Khodkov, T.; Goossens, S.; Taniguchi, T.; Watanabe, K.; Livreri, P.; Koppens, F. H. L. et al. High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS Nano 2019, 13, 8926–8935.

File
12274_2021_3922_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 July 2021
Revised: 17 September 2021
Accepted: 30 September 2021
Published: 04 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors thank Beijing National Laboratory for Molecular Science. This work was supported by Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001). This work was financially supported by the Beijing Municipal Science & Technology Commission (Nos. Z181100004818001 and Z201100008720005), the National Basic Research Program of China (No. 2016YFA0200101), and the National Natural Science Foundation of China (No. 52072042).

Return