Journal Home > Volume 15 , Issue 4

Metal-organic frameworks (MOFs) are attractive for promising applications but plagued by difficult recovery and deployment due to their intrinsic nano/micro powder nature. Although significant efforts have been made to develop separable solid matrixes for MOF supporting, the poor loading stability and durability of MOFs still challenge their engineering applications. Here, we present a facile and effective approach to fabricate MOF-based melamine foams (MFs) (denoted as MOFiths) with ultrahigh loading stability and operation stability, easy separation, and high-efficient performance for versatile robust applications. By adopting our approach, numbers of typical fragile MOFs characterized with wide ranges of particle size (from ~ nm to ~ μm) can be precisely incorporated into MFs with controllable loading ratios (up to ~ 1,600%). Particularly, the produced MOFiths show excellent capacities for the highly effective and durable water purifications and acetalization reactions. 100% of organic pollutants can be rapidly destructed within 10 min by MOFiths initiated Fenton or catalytic ozonation processes under five successive cycles while the maximum adsorption capacity of MOFiths toward Pb(II), Cd(II), and Cu(II) reaches to 422, 222, and 105 mg·g−1, respectively. This study provides a critical solution to substantially facilitate the engineering applications of MOFs for long-term use in practice.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrastable MOF-based foams for versatile applications

Show Author's information Qian Hu1Licong Xu1,6Kaixing Fu3,4Feichao Zhu1Taoyu Yang1Tao Yang5Jinming Luo3Minghua Wu1Deyou Yu1,2,6( )
Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332, USA
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec 46117, Czech Republic
Zheijiang Sci-Tech University Tongxiang Research Institute, Tongxiang 345000, China

Abstract

Metal-organic frameworks (MOFs) are attractive for promising applications but plagued by difficult recovery and deployment due to their intrinsic nano/micro powder nature. Although significant efforts have been made to develop separable solid matrixes for MOF supporting, the poor loading stability and durability of MOFs still challenge their engineering applications. Here, we present a facile and effective approach to fabricate MOF-based melamine foams (MFs) (denoted as MOFiths) with ultrahigh loading stability and operation stability, easy separation, and high-efficient performance for versatile robust applications. By adopting our approach, numbers of typical fragile MOFs characterized with wide ranges of particle size (from ~ nm to ~ μm) can be precisely incorporated into MFs with controllable loading ratios (up to ~ 1,600%). Particularly, the produced MOFiths show excellent capacities for the highly effective and durable water purifications and acetalization reactions. 100% of organic pollutants can be rapidly destructed within 10 min by MOFiths initiated Fenton or catalytic ozonation processes under five successive cycles while the maximum adsorption capacity of MOFiths toward Pb(II), Cd(II), and Cu(II) reaches to 422, 222, and 105 mg·g−1, respectively. This study provides a critical solution to substantially facilitate the engineering applications of MOFs for long-term use in practice.

Keywords: metal-organic framework, melamine foam, ultrastability, versatile applications, long-term use

References(69)

1

Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.

2

Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

3

Liu, X. C.; Zhou, Y. Y.; Zhang, J. C.; Tang, L.; Luo, L.; Zeng, G. M. Iron containing metal-organic frameworks: Structure, synthesis, and applications in environmental remediation. ACS Appl. Mater. Interfaces 2017, 9, 20255–20275.

4

Qiu, J. H.; Zhang, X. G.; Feng, Y.; Zhang, X. F.; Wang, H. T.; Yao, J. F. Modified metal-organic frameworks as photocatalysts. Appl. Catal. B:Environ. 2018, 231, 317–342.

5

Kobielska, P. A.; Howarth, A. J.; Farha, O. K.; Nayak, S. Metal-organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 2018, 358, 92–107.

6

Cheng, M.; Lai, C.; Liu, Y.; Zeng, G. M.; Huang, D. L.; Zhang, C.; Qin, L.; Hu, L.; Zhou, C. Y.; Xiong, W. P. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coord. Chem. Rev. 2018, 368, 80–92.

7

Guo, S. L.; Yuan, H.; Luo, W.; Liu, X. Q.; Zhang, X. T.; Jiang, H. Q.; Liu, F.; Cheng, G. J. Isolated atomic catalysts encapsulated in MOF for ultrafast water pollutant treatment. Nano Res. 2021, 14, 1287–1293.

8

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

9

Shen, K.; Zhang, L.; Chen, X. D.; Liu, L. M.; Zhang, D. L.; Han, Y.; Chen, J. Y.; Long, J.; Luque, R.; Li, Y. W. et al. Ordered macro-microporous metal-organic framework single crystals. Science 2018, 359, 206–210.

10

Farrusseng, D.; Aguado, S.; Pinel, C. Metal-organic frameworks: Opportunities for catalysis. Angew. Chem., Int. Ed. 2009, 48, 7502–7513.

11

Chen, L. Y.; Xu, Q. Metal-organic framework composites for catalysis. Matter 2019, 1, 57–89.

12

Zhang, X. F.; Liu, H. T.; An, P. F.; Shi, Y. N.; Han, J. Y.; Yang, Z. J.; Long, C.; Guo, J.; Zhao, S. L.; Zhao, K. et al. Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO2 cycloaddition. Sci. Adv. 2020, 6, eaaz4824.

13

McHugh, L. N.; Terracina, A.; Wheatley, P. S.; Buscarino, G.; Smith, M. W.; Morris, R. E. Metal-organic framework-activated carbon composite materials for the removal of ammonia from contaminated airstreams. Angew. Chem., Int. Ed. 2019, 58, 11747–11751.

14

Tian, T.; Zeng, Z. X.; Vulpe, D.; Casco, M. E.; Divitini, G.; Midgley, P. A.; Silvestre-Albero, J.; Tan, J. C.; Moghadam, P. Z.; Fairen-Jimenez, D. A sol-gel monolithic metal-organic framework with enhanced methane uptake. Nat. Mater. 2018, 17, 174–179.

15

Li, L.; Lin, R. B.; Krishna, R.; Li, H.; Xiang, S. C.; Wu, H.; Li, J. P.; Zhou, W.; Chen, B. L. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 2018, 362, 443–446.

16

Chen, Y. F.; Zhang, S. H.; Cao, S. J.; Li, S. Q.; Chen, F.; Yuan, S.; Xu, C.; Zhou, J. W.; Feng, X.; Ma, X. J. et al. Roll-to-roll production of metal-organic framework coatings for particulate matter removal. Adv. Mater. 2017, 29, 1606221.

17

Huang, N.; Drake, H.; Li, J. L.; Pang, J. D.; Wang, Y.; Yuan, S.; Wang, Q.; Cai, P. Y.; Qin, J. S.; Zhou, H. C. Flexible and hierarchical metal-organic framework composites for high-performance catalysis. Angew. Chem., Int. Ed. 2018, 57, 8916–8920.

18

Chen, Y. F.; Li, S. Q.; Pei, X. K.; Zhou, J. W.; Feng, X.; Zhang, S. H.; Cheng, Y. Y.; Li, H. W.; Han, R. D.; Wang, B. A solvent-free hot-pressing method for preparing metal-organic-framework coatings. Angew. Chem., Int. Ed. 2016, 55, 3419–3423.

19

Chen, Y. F.; Huang, X. Q.; Zhang, S. H.; Li, S. Q.; Cao, S. J.; Pei, X. K.; Zhou, J. W.; Feng, X.; Wang, B. Shaping of metal-organic frameworks: From fluid to shaped bodies and robust foams. J. Am. Chem. Soc. 2016, 138, 10810–10813.

20

Chen, Y. F.; Chen, F.; Zhang, S. H.; Cai, Y.; Cao, S. J.; Li, S. Q.; Zhao, W. Q.; Yuan, S.; Feng, X.; Cao, A. Y. et al. Facile fabrication of multifunctional metal-organic framework hollow tubes to trap pollutants. J. Am. Chem. Soc. 2017, 139, 16482–16485.

21

Lu, A. X.; McEntee, M.; Browe, M. A.; Hall, M. G.; DeCoste, J. B.; Peterson, G. W. MOFabric: Electrospun nanofiber mats from PVDF/UiO-66-NH2 for chemical protection and decontamination. ACS Appl. Mater. Interfaces 2017, 9, 13632–13636.

22

Kalaj, M.; Denny, M. S. Jr.; Bentz, K. C.; Palomba, J. M.; Cohen, S. M. Nylon-MOF composites through postsynthetic polymerization. Angew. Chem., Int. Ed. 2019, 58, 2336–2340.

23

Kim, M. L.; Otal, E. H.; Hinestroza, J. P. Cellulose meets reticular chemistry: Interactions between cellulosic substrates and metal-organic frameworks. Cellulose 2019, 26, 123–137.

24

Lee, D. T.; Jamir, J. D.; Peterson, G. W.; Parsons, G. N. Water-stable chemical-protective textiles via euhedral surface-oriented 2D Cu-TCPP metal-organic frameworks. Small 2019, 15, 1805133.

25

Pomerantz, N. L.; Anderson, E. E.; Dugan, N. P.; Hoffman, N. F.; Barton, H. F.; Lee, D. T.; Oldham, C. J.; Peterson, G. W.; Parsons, G. N. Air, water vapor, and aerosol transport through textiles with surface functional coatings of metal oxides and metal-organic frameworks. ACS Appl. Mater. Interfaces 2019, 11, 24683–24690.

26

Smith, M. K.; Mirica, K. A. Self-organized frameworks on textiles (SOFT): Conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 2017, 139, 16759–16767.

27

Wang, D. W.; Gilliland III, S. E.; Yi, X. B.; Logan, K.; Heitger, D. R.; Lucas, H. R.; Wang, W. N. Iron mesh-based metal organic framework filter for efficient arsenic removal. Environ. Sci. Technol. 2018, 52, 4275–4284.

28

Li, H.; Yin, Y. Y.; Zhu, L.; Xiong, Y.; Li, X.; Guo, T. C.; Xing, W.; Xue, Q. Z. A hierarchical structured steel mesh decorated with metal organic framework/graphene oxide for high-efficient oil/water separation. J. Hazard. Mater. 2019, 373, 725–732.

29

Li, X.; Liu, Y. X.; Wang, J.; Gascon, J.; Li, J. S. Van der Bruggen, B. Metal-organic frameworks based membranes for liquid separation. Chem. Soc. Rev. 2017, 46, 7124–7144.

30

Ma, X. J.; Chai, Y. T.; Li, P.; Wang, B. Metal-organic framework films and their potential applications in environmental pollution control. Acc. Chem. Res. 2019, 52, 1461–1470.

31

Li, T.; Zhang, W. M.; Zhai, S.; Gao, G. D.; Ding, J.; Zhang, W. B.; Liu, Y.; Zhao, X.; Pan, B. C.; Lv, L. Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane. Water Res. 2018, 143, 87–98.

32

Zhu, L. T.; Zong, L.; Wu, X. C.; Li, M. J.; Wang, H. S.; You, J.; Li, C. X. Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 2018, 12, 4462–4468.

33

Gu, J. H.; Fan, H. W.; Li, C. X.; Caro, J.; Meng, H. Robust superhydrophobic/superoleophilic wrinkled microspherical MOF@rGO composites for efficient oil-water separation. Angew. Chem., Int. Ed. 2019, 58, 5297–5301.

34

Zhu, H.; Yang, X.; Cranston, E. D.; Zhu, S. P. Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications. Adv. Mater. 2016, 28, 7652–7657.

35

Lei, Z. W.; Deng, Y. H.; Wang, C. Y. Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction. J. Mater. Chem. A 2018, 6, 3258–3263.

36

Jiang, Z. R.; Ge, J.; Zhou, Y. X.; Wang, Z. U.; Chen, D. X.; Yu, S. H.; Jiang, H. L. Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water. NPG Asia Mater. 2016, 8, e253.

37

Brockgreitens, J. W.; Heidari, F.; Abbas, A. Versatile process for the preparation of nanocomposite sorbents: Phosphorus and arsenic removal. Environ. Sci. Technol. 2020, 54, 9034–9043.

38

Zhu, L. L.; Ji, J. H.; Liu, J.; Mine, S.; Matsuoka, M.; Zhang, J. L.; Xing, M. Y. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control. Angew. Chem., Int. Ed. 2020, 59, 13968–13976.

39

Chen, Y. J.; Chen, Y. F.; Miao, C.; Wang, Y. R.; Gao, G. K.; Yang, R. X.; Zhu, H. J.; Wang, J. H.; Li, S. L.; Lan, Y. Q. Metal-organic framework-based foams for efficient microplastics removal. J. Mater. Chem. A 2020, 8, 14644–14652.

40

Lin, K. Y. A.; Chang, H. A. A zeolitic imidazole framework (ZIF)-sponge composite prepared via a surfactant-assisted dip-coating method. J. Mater. Chem. A 2015, 3, 20060–20064.

41

Duan, P.; Moreton, J. C.; Tavares, S. R.; Semino, R.; Maurin, G.; Cohen, S. M.; Schmidt-Rohr, K. Polymer infiltration into metal-organic frameworks in mixed-matrix membranes detected in situ by NMR. J. Am. Chem. Soc. 2019, 141, 7589–7595.

42

Yu, D. Y.; Wu, M. H.; Hu, Q.; Wang, L. L.; Lv, C. C.; Zhang, L. Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant: Efficiency and mechanism. J. Hazard. Mater. 2019, 367, 456–464.

43

Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150.

44

Han, Y. T.; Liu, M.; Li, K. Y.; Sun, Q.; Zhang, W. S.; Song, C. S.; Zhang, G. L.; Zhang, Z. C.; Guo, X. W. In situ synthesis of titanium doped hybrid metal-organic framework UiO-66 with enhanced adsorption capacity for organic dyes. Inorg. Chem. Front. 2017, 4, 1870–1880.

45

Yu, D. Y.; Li, L. B.; Wu, M. H.; Crittenden, J. C. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Appl. Catal. B:Environ. 2019, 251, 66–75.

46

Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774–6780.

47

Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1888–1892.

48

Wang, D. K.; Huang, R. K.; Liu, W. J.; Sun, D. R.; Li, Z. H. Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 2014, 4, 4254–4260.

49

Semino, R.; Moreton, J. C.; Ramsahye, N. A.; Cohen, S. M.; Maurin, G. Understanding the origins of metal-organic framework/polymer compatibility. Chem. Sci. 2018, 9, 315–324.

50

Ren, Y.; Li, T.; Zhang, W. M.; Wang, S.; Shi, M. Q.; Shan, C.; Zhang, W. B.; Guan, X. H.; Lv, L.; Hua, M. et al. MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue. J. Hazard. Mater. 2019, 365, 312–321.

51

Zhang, R.; Ji, S. L.; Wang, N. X.; Wang, L.; Zhang, G. J.; Li, J. R. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes. Angew. Chem., Int. Ed. 2014, 53, 9775–9779.

52

Alvarez, P. J. J.; Chan, C. K.; Elimelech, M.; Halas, N. J.; Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 2018, 13, 634–641.

53

Hodges, B. C.; Cates, E. L.; Kim, J. H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650.

54

Mauter, M. S.; Zucker, I.; Perreault, F.; Werber, J. R.; Kim, J. H.; Elimelech, M. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 2018, 1, 166–175.

55

Gao, C.; Chen, S.; Quan, X.; Yu, H. T.; Zhang, Y. B. Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants. J. Catal. 2017, 356, 125–132.

56

Tang, J. T.; Wang, J. L. Metal organic framework with coordinatively unsaturated sites as efficient fenton-like catalyst for enhanced degradation of sulfamethazine. Environ. Sci. Technol. 2018, 52, 5367–5377.

57

Chen, Y.; Zhang, G.; Liu, H. J.; Qu, J. H. Confining free radicals in close vicinity to contaminants enables ultrafast fenton-like processes in the interspacing of MoS2 membranes. Angew. Chem., Int. Ed. 2019, 58, 8134–8138.

58

Luo, J. M.; Fu, K. X.; Sun, M.; Yin, K.; Wang, D.; Liu, X.; Crittenden, J. C. Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2. ACS Appl. Mater. Interfaces 2019, 11, 38789–38797.

59

Luo, J. M.; Sun, M.; Ritt, C. L.; Liu, X.; Pei, Y.; Crittenden, J. C.; Elimelech, M. Tuning Pb(II) adsorption from aqueous solutions on ultrathin iron oxychloride (FeOCl) nanosheets. Environ. Sci. Technol. 2019, 53, 2075–2085.

60

Ji, C. H.; Wu, D. W.; Lu, J. H.; Shan, C.; Ren, Y.; Li, T.; Lv, L.; Pan, B. C.; Zhang, W. M. Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: Mechanisms and the role of exchangeable protons. Water Res. 2021, 189, 116599.

61

Wen, J.; Fang, Y.; Zeng, G. M. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: A review of studies from the last decade. Chemosphere 2018, 201, 627–643.

62

Bui, N. T.; Kang, H.; Teat, S. J.; Su, G. M.; Pao, C. W.; Liu, Y. S.; Zaia, E. W.; Guo, J. H.; Chen, J. L.; Meihaus, K. R. et al. A nature-inspired hydrogen-bonded supramolecular complex for selective copper ion removal from water. Nat. Commun. 2020, 11, 3947.

63

Li, J.; Wang, X. X.; Zhao, G. X.; Chen, C. L.; Chai, Z. F.; Alsaedi, A.; Hayat, T.; Wang, X. K. Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322–2356.

64

Shayegan, H.; Ali, G. A. M.; Safarifard, V. Recent progress in the removal of heavy metal ions from water using metal-organic frameworks. ChemistrySelect 2020, 5, 124–146.

65

Wang, K.; Gu, J. W.; Yin, N. Efficient removal of Pb(II) and Cd(II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis. Ind. Eng. Chem. Res. 2017, 56, 1880–1887.

66

Kim, J. H.; Čorić, I.; Vellalath, S.; List, B. The catalytic asymmetric acetalization. Angew. Chem., Int. Ed. 2013, 52, 4474–4477.

67

Konnerth, H.; Matsagar, B. M.; Chen, S. S.; Prechtl, M. H. G.; Shieh, F. K.; Wu, K. C. W. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord. Chem. Rev. 2020, 416, 213319.

68

Zhang, X. F.; Han, J. Y.; Guo, J.; Tang, Z. Y. Engineering nanoscale metal-organic frameworks for heterogeneous catalysis. Small Struct. 2021, 2, 2000141.

69

Zhang, F. M.; Shi, J.; Jin, Y.; Fu, Y. H.; Zhong, Y. J.; Zhu, W. D. Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem. Eng. J. 2015, 259, 183–190.

Video
12274_3918_ESM1.avi
12274_3918_ESM2.avi
File
12274_2021_3918_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 March 2021
Revised: 14 September 2021
Accepted: 30 September 2021
Published: 15 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22106141), the Key Research and Development Program of Zhejiang Province (No. 2018C03004), the Scientific Launching Funding of Zhejiang Sci-Tech University and the Postdoctoral Program (No. TYY202103) of Zhejiang Sci-Tech University Tongxiang Research Institute. The authors also acknowledge the support by the Brook Byers Institute for Sustainable Systems, Hightower Chair and the Georgia Research Alliance at the Georgia Institute of Technology. The views and ideas expressed herein are solely those of the authors’ and do not represent the ideas of the funding agencies in any form.

Return