Journal Home > Volume 15 , Issue 4

Structural reconstruction of nanomaterials offers a fantastic way to regulate the electronic structure of active sites and promote their catalytic activities. However, how to properly facilitate surface reconstruction to overcome large overpotential that stimulate the surface reconstruction has remained elusive. Herein, we adopt a facile approach to activate surface reconstruction on Ni(OH)2 by incorporating F anions to achieve electro-derived structural oxidation process and further boost its oxygen evolution reaction (OER) activity. Ex situ Raman and X-ray photoemission spectroscopy studies indicate that F ions incorporation facilitated surface reconstruction and promotes the original Ni(OH)2 transformed into a mesoporous and amorphous F-NiOOH layer during the electrochemical process. Density functional theory (DFT) calculation reveals that this self-reconstructed NiOOH induces a space-charge effect on the p–n junction interface, which not only promotes the absorption of intermediates species (*OH, *O, and *OOH) and charge-transfer process during catalysis, but also leads to a strong interaction of the p–n junction interface to stabilize the materials. This work opens up a new possibility to regulate the electronic structure of active sites and promote their catalytic activities.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surface reconstruction establishing Mott–Schottky heterojunction and built-in space-charging effect accelerating oxygen evolution reaction

Show Author's information Yao Kang1,§Shuo Wang1,§Kwan San Hui2( )Shuxing Wu3Duc Anh Dinh4Xi Fan5Feng Bin6Fuming Chen7Jianxin Geng8Weng-Chon (Max) Cheong9( )Kwun Nam Hui1( )
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
Engineering, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
NTT hi-tech institute, Nguyen Tat Thanh university, Ho Chi Minh city 700000, Vietnam
Ningbo Institute of Materials Technology, Engineering, Chinese Academy of Sciences, Ningbo 315201, China
State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Science, Beijing 100190, China
State Key Laboratory of Optic Information Physics and Technologies, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macao 999078, China

§ Yao Kang and Shuo Wang contributed equally to this work.

Abstract

Structural reconstruction of nanomaterials offers a fantastic way to regulate the electronic structure of active sites and promote their catalytic activities. However, how to properly facilitate surface reconstruction to overcome large overpotential that stimulate the surface reconstruction has remained elusive. Herein, we adopt a facile approach to activate surface reconstruction on Ni(OH)2 by incorporating F anions to achieve electro-derived structural oxidation process and further boost its oxygen evolution reaction (OER) activity. Ex situ Raman and X-ray photoemission spectroscopy studies indicate that F ions incorporation facilitated surface reconstruction and promotes the original Ni(OH)2 transformed into a mesoporous and amorphous F-NiOOH layer during the electrochemical process. Density functional theory (DFT) calculation reveals that this self-reconstructed NiOOH induces a space-charge effect on the p–n junction interface, which not only promotes the absorption of intermediates species (*OH, *O, and *OOH) and charge-transfer process during catalysis, but also leads to a strong interaction of the p–n junction interface to stabilize the materials. This work opens up a new possibility to regulate the electronic structure of active sites and promote their catalytic activities.

Keywords: surface reconstruction, oxygen evolution reaction (OER), F anions, dynamic migration, nickel hydroxides

References(55)

1

Xu, H. B.; Fei, B.; Cai, G. H.; Ha, Y.; Liu, J.; Jia, H. X.; Zhang, J. C.; Liu, M.; Wu, R. B. Boronization-induced ultrathin 2D nanosheets with abundant crystalline-amorphous phase boundary supported on nickel foam toward efficient water splitting. Adv. Energy Mater. 2020, 10, 1902714.

2

Wang, X. P.; Wu, H. J.; Xi, S. B.; Lee, W. S. V.; Zhang, J.; Wu, Z. H.; Wang, J. O.; Hu, T. D.; Liu, L. M.; Han, Y. et al. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy Environ. Sci. 2020, 13, 229–237.

3

Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

4

Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. L. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447–454.

5
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: 10.1007/s12274-021-3794-0.https://doi.org/10.1007/s12274-021-3794-0
DOI
6

Shi, Q. R.; Zhu, C. Z.; Du, D.; Lin, Y. H. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 2019, 48, 3181–3192.

7

Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

8

Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.

9

Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358–1368.

10

Zagalskaya, A.; Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 2020, 10, 3650–3657.

11

Li, S.; Xi, C.; Jin, Y. Z.; Wu, D. Y.; Wang, J. Q.; Liu, T.; Wang, H. B.; Dong, C. K.; Liu, H.; Kulinich, S. A. et al. Ir-O-V catalytic group in Ir-doped NiV(OH)2 for overall water splitting. ACS Energy Lett. 2019, 4, 1823–1829.

12

Yeo, B. S. Oxygen evolution by stabilized single Ru atoms. Nat. Catal. 2019, 2, 284–285.

13

Zhu, R. M.; Zhang, Y.; Ding, J. W.; Pang, H. Thermo-induced nanocomposites with improved catalytic efficiency for oxygen evolution. Sci. China Mater. 2021, 64, 1556–1562.

14

Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.

15

Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230.

16

Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068–3074.

17

Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334.

18

Yang, N.; Tang, C.; Wang, K. Y.; Du, G.; Asiri, A. M.; Sun, X. P. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Res. 2016, 9, 3346–3354.

19

Xu, Z. J. Transition metal oxides for water oxidation: All about oxyhydroxides? Sci. China Mater. 2020, 63, 3–7.

20

Duan, Y.; Sun, S. N.; Sun, Y. M.; Xi, S. B.; Chi, X.; Zhang, Q. H.; Ren, X.; Wang, J. X.; Ong, S. J. H.; Du, Y. H. et al. Mastering surface reconstruction of metastable spinel oxides for better water oxidation. Adv. Mater. 2019, 31, 1807898.

21

Li, Y. Y.; Du, X. C.; Huang, J. W.; Wu, C. Y.; Sun, Y. H.; Zou, G. F.; Yang, C. T.; Xiong, J. Recent progress on surface reconstruction of earth-abundant electrocatalysts for water oxidation. Small 2019, 15, 1901980.

22

Yang, Z. B.; Liang, X. Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Res. 2020, 13, 461–466.

23

Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Cataly. 2019, 2, 763–772.

24

Wang, L.; Zhou, Q.; Pu, Z. H.; Zhang, Q.; Mu, X. Q.; Jing, H. Y.; Liu, S. L.; Chen, C. Y.; Mu, S. C. Surface reconstruction engineering of cobalt phosphides by Ru inducement to form hollow Ru-RuPx-CoxP pre-electrocatalysts with accelerated oxygen evolution reaction. Nano Energy 2018, 53, 270–276.

25

Huang, J. W.; Li, Y. Y.; Zhang, Y. D.; Rao, G. F.; Wu, C. Y.; Hu, Y.; Wang, X. F.; Lu, R. F.; Li, Y. R.; Xiong, J. Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 17458–17464.

26

Yan, J. Q.; Kong, L. Q.; Ji, Y. J.; White, J.; Li, Y. Y.; Zhang, J.; An, P. F.; Liu, S. Z.; Lee, S. T.; Ma, T. Y. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 2019, 10, 2149.

27

Kou, T. Y.; Wang, S. W.; Hauser, J. L.; Chen, M. P.; Oliver, S. R. J.; Ye, Y. F.; Guo, J. H.; Li, Y. Ni foam-supported Fe-doped β-Ni(OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction. ACS Energy Lett. 2019, 4, 622–628.

28

Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(V), and beyond. Adv. Mater. 2020, 32, 2000872.

29

Zhang, Z. B.; Zhu, Y. L.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Anion doping: A new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv. Energy Mater. 2017, 7, 1700242.

30

Chen, P. Z.; Zhou, T. P.; Wang, S. B.; Zhang, N.; Tong, Y.; Ju, H. X.; Chu, W. S.; Wu, C. Z.; Xie, Y. Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 15471–15475.

31

Zhang, B. W.; Hu, S. Turning Ni-based hydroxide into an efficient hydrogen evolution electrocatalyst by fluoride incorporation. Electrochem. Commun. 2018, 86, 108–112.

32

Li, R. Q.; Liu, Q.; Zhou, Y. N.; Lu, M. J.; Hou, J. L.; Qu, K. G.; Zhu, Y. C.; Fontaine, O. 3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis. J. Mater. Chem. A 2021, 9, 4159–4166.

33

Shi, P.; Cheng, X. D.; Lyu, S. L. Efficient electrocatalytic oxygen evolution at ultra-high current densities over 3D Fe, N doped Ni(OH)2 nanosheets. Chin. Chem. Lett. 2021, 32, 1210–1214.

34

Mu, C.; Butenko, D. S.; Odynets, I. V.; Zatovsky, І. V.; Li, J. Z.; Han, W.; Klyui, N. I. Na4Ni3P4O15-Ni(OH)2 core-shell nanoparticles as hybrid electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. Dalton Trans. 2020, 49, 8226–8237.

35

Wang, Y. Q.; Tao, S.; Lin, H.; Han, S. B.; Zhong, W. H.; Xie, Y. S.; Hu, J.; Yang, S. H. NaBH4 induces a high ratio of Ni3+/Ni2+ boosting OER activity of the NiFe LDH electrocatalyst. RSC Adv. 2020, 10, 33475–33482.

36

Xu, Q. C.; Chu, M. S.; Liu, M. M.; Zhang, J. H.; Jiang, H.; Li, C. Z. Fluorine-triggered surface reconstruction of Ni3S2 electrocatalysts towards enhanced water oxidation. Chem. Eng. J. 2021, 411, 128488.

37

Li, S. L.; Li, Z. C.; Ma, R. G.; Gao, C. L.; Liu, L. L.; Hu, L. P.; Zhu, J. L.; Sun, T. M.; Tang, Y. F.; Liu, D. M. et al. A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 3773–3780.

38

Ren, X.; Wei, C.; Sun, Y. M.; Liu, X. Z.; Meng, F. Q.; Meng, X. X.; Sun, S. N.; Xi, S. B.; Du, Y. H.; Bi, Z. F. et al. Constructing an adaptive heterojunction as a highly active catalyst for the oxygen evolution reaction. Adv. Mater. 2020, 32, 2001292.

39

Wang, Y.; Zhu, Y. L.; Zhao, S. L.; She, S. X.; Zhang, F. F.; Chen, Y.; Williams, T.; Gengenbach, T.; Zu, L. H.; Mao, H. Y. et al. Anion etching for accessing rapid and deep self-reconstruction of precatalysts for water oxidation. Matter 2020, 3, 2124–2137.

40

Sun, Y.; Li, R.; Chen, X. X.; Wu, J.; Xie, Y.; Wang, X.; Ma, K. K.; Wang, L.; Zhang, Z.; Liao, Q. L. et al. A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts. Adv. Energy Mater. 2021, 11, 2003755.

41

Xu, C. Y.; Lu, W.; Yan, L.; Ning, J. Q.; Zheng, C. C.; Zhong, Y. J.; Zhang, Z. Y.; Hu, Y. Hierarchical molybdenum-doped cobaltous hydroxide nanotubes assembled by cross-linked porous nanosheets with efficient electronic modulation toward overall water splitting. J. Colloid Interface Sci. 2020, 562, 400–408.

42

Tong, H.; Meng, Q.; Liu, J.; Li, T. T.; Gong, D. X.; Xiao, J. P.; Shen, L. F.; Zhang, T. F.; Bing, D.; Zhang, X. G. Cross-linked NiCo2O4 nanosheets with low crystallinity and rich oxygen vacancies for asymmetric supercapacitors. J. Alloys Compd. 2020, 822, 153689.

43

Shinde, N. M.; Raut, S. D.; Ghule, B. G.; Gunturu, K. C.; Pak, J. J.; Mane, R. S. Recasting Ni-foam into NiF2 nanorod arrays via a hydrothermal process for hydrogen evolution reaction application. Dalton Trans. 2021, 50, 6500–6505.

44

Jiang, X. L.; Tang, M. Y.; Tang, L.; Jiang, N.; Zheng, Q. J.; Xie, F. Y.; Lin, D. M. Hornwort-like hollow porous MoO3/NiF2 heterogeneous nanowires as high-performance electrocatalysts for efficient water oxidation. Electrochim. Acta 2021, 379, 138146.

45

Sang, Y.; Cao, X.; Wang, L. X.; Ding, G. F.; Wang, Y. J.; Yu, D. S.; Hao, Y. N.; Li, L. L.; Peng, S. J. Facile synthesis of three-dimensional spherical Ni(OH)2/NiCo2O4 heterojunctions as efficient bifunctional electrocatalysts for water splitting. Int. J. Hydrogen Energy 2020, 45, 30601–30610.

46

Hao, J.; Liu, J. W.; Wu, D.; Chen, M. X.; Liang, Y.; Wang, Q.; Wang, L.; Fu, X. Z.; Luo, J. L. In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B:Environ. 2021, 281, 119510.

47

Liu, H. Q.; Zhao, D. P.; Liu, Y.; Tong, Y. L.; Wu, X.; Shen, G. Z. NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode. Sci. China Mater. 2021, 64, 581–591.

48

He, K.; Tsega, T. T.; Liu, X.; Zai, J. T.; Li, X. H.; Liu, X. J.; Li, W. H.; Ali, N.; Qian, X. F. Utilizing the space-charge region of the FeNi-LDH/CoP p–n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem. 2019, 131, 12029–12035.

49

Zhang, K.; Kim, W.; Ma, M.; Shi, X. J.; Park, J. H. Tuning the charge transfer route by p–n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution. J. Mater. Chem. A 2015, 3, 4803–4810.

50

Anwer, H.; Park, J. W. Addressing the OER/HER imbalance by a redox transition-induced two-way electron injection in a bifunctional n–p–n electrode for excellent water splitting. J. Mater. Chem. A 2020, 8, 13218–13230.

51

Wang, G. R.; Li, Y. B.; Xu, L.; Jin, Z. L.; Wang, Y. B. Facile synthesis of difunctional NiV LDH@ZIF-67 p–n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well. Renew. Energy 2020, 162, 535–549.

52

She, H. D.; Yue, P. F.; Huang, J. W.; Wang, L.; Wang, Q. Z. One-step hydrothermal deposition of F: FeOOH onto BiVO4 photoanode for enhanced water oxidation. Chem. Eng. J. 2020, 392, 123703.

53

Xue, Z. H.; Su, H.; Yu, Q. Y.; Zhang, B.; Wang, H. H.; Li, X. H.; Chen, J. S. Janus Co/CoP nanoparticles as efficient Mott–Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 2017, 7, 1602355.

54

Chen, J. Y.; Fan, C.; Hu, X. Y.; Wang, C.; Huang, Z. H.; Fu, G. T.; Lee, J. M.; Tang, Y. W. Hierarchically porous Co/CoxMy (M = P, N) as an efficient Mott–Schottky electrocatalyst for oxygen evolution in rechargeable Zn-air batteries. Small 2019, 15, 1901518.

55

Hou, J. G.; Sun, Y. Q.; Wu, Y. Z.; Cao, S. Y.; Sun, L. C. Promoting active sites in core-shell nanowire array as Mott–Schottky electrocatalysts for efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1704447.

File
12274_2021_3917_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 07 September 2021
Revised: 27 September 2021
Accepted: 29 September 2021
Published: 12 December 2021
Issue date: April 2022

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

This work was funded by the Science and Technology Development Fund, Macau SAR (Nos. 0191/2017/A3, 0041/2019/A1, 0046/2019/AFJ, and 0021/2019/AIR), University of Macau (Nos. MYRG2017-00216-FST and MYRG2018-00192-IAPME), UEA funding, the National Natural Science Foundation of China (Nos. 51773211 and 21961160700), the Beijing Municipal Science & Technology Commission, the IBS (IBS-R019-D1), and the State Key Laboratory of Organic-Inorganic Composites (OIC) (No. 202101002). The DFT calculations were performed at High Performance Computing Cluster (HPCC) of Information and Communication Technology Office (ICTO) at University of Macau.

Rights and permissions

Copyright: 2021 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return