Journal Home > Volume 15 , Issue 4

Electrochromic (EC) materials that change color with voltage have been widely studied for use in dynamic windows. However, colorless-to-colorful switching with high contrast ratio is generically unattainable, especially for colorless-to-black electrochromic materials with an ultrahigh contrast ratio over the entire visible region. In this work, we developed Nb1.33C MXene-based dynamic windows with colorless-to-black switching of up to 75% reversible change in transmittance from 300 to 1,500 nm. By exploring the electrochromic effects of different electrolytes through in situ optical changes and electrochemical quartz crystal microbalance (EQCM), it is found that electrochromic behavior is greatly influenced by the extent of reversible Li+ insertion/deinsertion between the two-dimensional Nb1.33C MXene nanosheets. In addition, a colorless-to-black EC device based on Nb1.33C with an overall integrated contrast ratio over 80% was successfully constructed by a solution-processable spin coating method. This work enables a simple route to fabricate MXene-based high-performance electrochromic smart windows, which is important for further expanding the application of MXenes to optoelectronic and photonic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Colorless-to-colorful switching of electrochromic MXene by reversible ion insertion

Show Author's information Jianxia Jiang1,2Leiqiang Qin2( )Joseph Halim2Per O. Å. Persson2Lintao Hou1( )Johanna Rosen2( )
Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Physics Department, Jinan University, Guangzhou 510632, China
Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-58183, Sweden

Abstract

Electrochromic (EC) materials that change color with voltage have been widely studied for use in dynamic windows. However, colorless-to-colorful switching with high contrast ratio is generically unattainable, especially for colorless-to-black electrochromic materials with an ultrahigh contrast ratio over the entire visible region. In this work, we developed Nb1.33C MXene-based dynamic windows with colorless-to-black switching of up to 75% reversible change in transmittance from 300 to 1,500 nm. By exploring the electrochromic effects of different electrolytes through in situ optical changes and electrochemical quartz crystal microbalance (EQCM), it is found that electrochromic behavior is greatly influenced by the extent of reversible Li+ insertion/deinsertion between the two-dimensional Nb1.33C MXene nanosheets. In addition, a colorless-to-black EC device based on Nb1.33C with an overall integrated contrast ratio over 80% was successfully constructed by a solution-processable spin coating method. This work enables a simple route to fabricate MXene-based high-performance electrochromic smart windows, which is important for further expanding the application of MXenes to optoelectronic and photonic applications.

Keywords: MXenes, electrochromic materials, colorless-to-black switching, high contrast ratio, reversible Li+ insertion

References(41)

1

Balaras, C. A.; Droutsa, K.; Dascalaki, E.; Kontoyiannidis, S. Heating energy consumption and resulting environmental impact of European apartment buildings. Energy Build. 2005, 37, 429–442.

2

Grynning, S.; Gustavsen, A.; Time, B.; Jelle, B. P. Windows in the buildings of tomorrow: Energy losers or energy gainers? Energy Build. 2013, 61, 185–192.

3

Lee, J. W.; Jung, H. J.; Park, J. Y.; Lee, J. B.; Yoon, Y. Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renew. Energy 2013, 50, 522–531.

4

Granqvist, C. G. Out of a niche. Nat. Mater. 2006, 5, 89–90.

5

Llordés, A.; Garcia, G.; Gazquez, J.; Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 2013, 500, 323–326.

6

Barile, C. J.; Slotcavage, D. J.; Hou, J. Y.; Strand, M. T.; Hernandez, T. S.; McGehee, M. D. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition. Joule 2017, 1, 133–145.

7

Gillaspie, D. T.; Tenent, R. C.; Dillon, A. C. Metal-oxide films for electrochromic applications: Present technology and future directions. J. Mater. Chem. 2010, 20, 9585–9592.

8

Qin, L. Q.; Xu, J. K.; Lu, B. Y.; Lu, Y.; Duan, X. M.; Nie, G. M. Synthesis and electrochromic properties of polyacrylate functionalized poly(3,4-ethylenedioxythiophene) network films. J. Mater. Chem. 2012, 22, 18345–18353.

9

Qin, L. Q.; Ding, Z. Q.; Hanif, M.; Jiang, J. X.; Liu, L. L.; Mo, Y. Q.; Xie, Z. Q.; Ma, Y. G. Poly(3,4-dioxythiophene) soft nano-network with a compatible ion transporting channel for improved electrochromic performance. Polym. Chem. 2016, 7, 6954–6963.

10

Nguyen, W. H.; Barile, C. J.; McGehee, M. D. Small molecule anchored to mesoporous ITO for high-contrast black electrochromics. J. Phys. Chem. C 2016, 120, 26336–26341.

11
Hou, R. P.; Li, H.; Diao, M. J.; Sun, Y. H.; Liang, Y.; Yu, Z. Y.; Huang, Z. P.; Zhang, C. Fast electrochemical activation of the broadband saturable absorption of tungsten oxide nanoporous film. Nano Res. , in press, DOI: 10.1007/s12274-021-3478-9.https://doi.org/10.1007/s12274-021-3478-9
DOI
12

Zhao, J. M.; Liu, L. T.; Zhang, Y.; Feng, Z. Y.; Zhao, F. F.; Wang, W. S. Light-responsive color switching of self-doped TiO2−x/WO3·0.33H2O hetero-nanoparticles for highly efficient rewritable paper. Nano Res. 2021, 14, 165–171.

13

Gunbas, G. E.; Durmus, A.; Toppare, L. Could green be greener? Novel donor-acceptor-type electrochromic polymers: Towards excellent neutral green materials with exceptional transmissive oxidized states for completion of RGB color space. Adv. Mater. 2008, 20, 691–695.

14

Beaujuge, P. M.; Reynolds, J. R. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268–320.

15
Müllen, K.; Reynolds, J. R.; Masuda, T. Conjugated Polymers: A Practical Guide to Synthesis; RSC Publishing: Cambridge, 2014.https://doi.org/10.1039/9781849739771
DOI
16

Beaujuge, P. M.; Ellinger, S.; Reynolds, J. R. The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. Nat. Mater. 2008, 7, 795–799.

17

Shi, P. J.; Amb, C. M.; Knott, E. P.; Thompson, E. J.; Liu, D. Y.; Mei, J. G.; Dyer, A. L.; Reynolds, J. R. Broadly absorbing black to transmissive switching electrochromic polymers. Adv. Mater. 2010, 22, 4949–4953.

18
Barsoum, M. W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides; John Wiley & Sons: Weinheim, 2013.https://doi.org/10.1002/9783527654581
DOI
19

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

20

Zhang, M.; Cao, J.; Wang, Y.; Song, J.; Jiang, T. C.; Zhang, Y. Y.; Si, W. M.; Li, X. W.; Meng, B.; Wen, G. W. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors. Nano Res. 2021, 14, 699–706.

21

Qin, L. Q.; Tao, Q. Z.; Ghazaly, A. E.; Fernandez-Rodriguez, J.; Persson, P. O. Å.; Rosen, J.; Zhang, F. L. High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33C MXene and PEDOT: PSS. Adv. Funct. Mater. 2018, 28, 1703808.

22

Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide "clay" with high volumetric capacitance. Nature 2014, 516, 78–81.

23

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

24

Hu, D. W.; Wang, S. Q.; Zhang, C.; Yi, P. S.; Jiang, P. K.; Huang, X. Y. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Res. 2021, 14, 2837–2845.

25

Zhang, C. F.; Nicolosi, V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 2019, 16, 102–125.

26

Tao, Q. Z.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M. W.; Persson, P. O. Å. et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 2017, 8, 14949.

27

Dahlqvist, M.; Lu, J.; Meshkian, R.; Tao, Q. Z.; Hultman, L.; Rosen, J. Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering. Sci. Adv. 2017, 3, e1700642.

28

Persson, P. O. Å.; Rosen, J. Current state of the art on tailoring the MXene composition, structure, and surface chemistry. Curr. Opin. Solid State Mater. Sci. 2019, 23, 100774.

29

Meshkian, R.; Dahlqvist, M.; Lu, J.; Wickman, B.; Halim, J.; Thörnberg, J.; Tao, Q. Z.; Li, S. X.; Intikhab, S.; Snyder, J. et al. W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv. Mater. 2018, 30, 1706409.

30

Persson, I.; el Ghazaly, A.; Tao, Q. Z.; Halim, J.; Kota, S.; Darakchieva, V.; Palisaitis, J.; Barsoum, M. W.; Rosen, J.; Persson, P. O. Å. Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small 2018, 14, 1703676.

31

Halim, J.; Palisaitis, J.; Lu, J.; Thörnberg, J.; Moon, E. J.; Precner, M.; Eklund, P.; Persson, P. O. Å.; Barsoum, M. W.; Rosen, J. Synthesis of two-dimensional Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3)2AlC MAX phase. ACS Appl. Nano Mater. 2018, 1, 2455–2460.

32
Zhou, J. H.; Kang, Q.; Xu, S. C.; Li, X. G.; Liu, C.; Ni, L.; Chen, N. N.; Lu, C. L.; Wang, X. Z.; Peng, L. M. et al. Ultrahigh rate capability of 1D/2D polyaniline/titanium carbide (MXene) nanohybrid for advanced asymmetric supercapacitors. Nano Res. 2022,15,285−295.https://doi.org/10.1007/s12274-021-3472-2
DOI
33

Salles, P.; Quain, E.; Kurra, N.; Sarycheva, A.; Gogotsi, Y. Automated scalpel patterning of solution processed thin films for fabrication of transparent MXene microsupercapacitors. Small 2018, 14, 1802864.

34

Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

35

Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv. Funct. Mater. 2016, 26, 4162–4168.

36

Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.

37

Qin, L. Q.; Jiang, J. X.; Tao, Q. Z.; Wang, C. F.; Persson, I.; Fahlman, M.; Persson, P. O. Å.; Hou, L. T.; Rosen, J.; Zhang, F. L. A flexible semitransparent photovoltaic supercapacitor based on water-processed MXene electrodes. J. Mater. Chem. A 2020, 8, 5467–5475.

38

Granqvist, C. G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 2014, 564, 1–38.

39

Niklasson, G. A.; Granqvist, C. G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127–156.

40

Inaba, M.; Iriyama, Y.; Ogumi, Z.; Todzuka, Y.; Tasaka, A. Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation. J. Raman Spectrosc. 1997, 28, 613–617.

DOI
41

Flores, E.; Novák, P.; Berg, E. J. In situ and operando Raman spectroscopy of layered transition metal oxides for Li-ion battery cathodes. Front. Energy Res. 2018, 6, 82.

File
12274_2021_3913_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 July 2021
Revised: 02 September 2021
Accepted: 29 September 2021
Published: 12 December 2021
Issue date: April 2022

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

This work was financed by the SSF Research Infrastructure Fellow Program (No. RIF 14–0074), the SSF Synergy Program EM16–0004, and by the Knut and Alice Wallenberg (KAW) Foundation through a Fellowship Grant, a Project Grant (No. KAW2020.0033), and for support of the electron microscopy laboratory in Linköping University. Support from the National Natural Science Foundation of China (No. 61774077), the Guangdong Joint Research Fund (No. 2020A1515110738), the Postdoctoral Research Foundation of China (No. 2020M683187), the Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province (No. 2019B1515120073) and the Guangzhou Key laboratory of Vacuum Coating Technologies and New Energy Materials Open Projects Fund (No. KFVE20200006) are also acknowledged.

Rights and permissions

Copyright: 2021 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return