Journal Home > Volume 15 , Issue 4

Identifying air-stable two-dimensional (2D) ferromagnetism with high Curie temperature (Tc) is highly desirable for its potential applications in next-generation spintronics. However, most of the work reported so far mainly focuses on promoting one specific key factor of 2D ferromagnetism (Tc or air stability), rather than comprehensive promotion of both of them. Herein, ultrathin Cr1–xTe crystals grown by chemical vapor deposition (CVD) show thickness-dependent Tc up to 285 K. The out-of-plane ferromagnetic order is well preserved down to atomically thin limit (2.0 nm), as evidenced by anomalous Hall effect observed in non-encapsulated samples. Besides, the CVD-grown Cr1−xTe nanosheets present excellent ambient stability, with no apparent change in surface roughness or electrical transport properties after exposure to air for months. Our work provides an alternative platform for investigation of intrinsic 2D ferromagnetism and development of innovative spintronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Near room-temperature ferromagnetism in air-stable two-dimensional Cr1−xTe grown by chemical vapor deposition

Show Author's information Zhansheng Gao1,§Ming Tang2,§Junwei Huang2,§Jiabiao Chen1Wei Ai1Linglu Wu2Xinyue Dong1Yifei Ma1Zheshan Zhang1Lei Zhang1Yaping Du1Huixia Fu3Hongtao Yuan2( )Jinxiong Wu1,4( )Feng Luo1( )
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
Center of Quantum Materials and Devices & College of Physics, Chongqing University, Chongqing 401331, China
Beijing National Laboratory for Molecular Sciences, Beijing 100871, China

§ Zhansheng Gao, Ming Tang, and Junwei Huang contributed equally to this work.

Abstract

Identifying air-stable two-dimensional (2D) ferromagnetism with high Curie temperature (Tc) is highly desirable for its potential applications in next-generation spintronics. However, most of the work reported so far mainly focuses on promoting one specific key factor of 2D ferromagnetism (Tc or air stability), rather than comprehensive promotion of both of them. Herein, ultrathin Cr1–xTe crystals grown by chemical vapor deposition (CVD) show thickness-dependent Tc up to 285 K. The out-of-plane ferromagnetic order is well preserved down to atomically thin limit (2.0 nm), as evidenced by anomalous Hall effect observed in non-encapsulated samples. Besides, the CVD-grown Cr1−xTe nanosheets present excellent ambient stability, with no apparent change in surface roughness or electrical transport properties after exposure to air for months. Our work provides an alternative platform for investigation of intrinsic 2D ferromagnetism and development of innovative spintronic devices.

Keywords: chemical vapor deposition, air stability, Cr1-xTe , room-temperature ferromagnetism, anomalous Hall effect

References(36)

1

Jiang, S. W.; Shan, J.; Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 2018, 17, 406–410.

2

Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

3

Chen, W. J.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983–987.

4

Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

5

Wang, Z.; Zhang, T. Y.; Ding, M.; Dong, B. J.; Li, Y. X.; Chen, M. L.; Li, X. X.; Huang, J. Q.; Wang, H. W.; Zhao, X. T. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559.

6

Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

7

Song, T. C.; Cai, X. H.; Tu, M. W. Y.; Zhang, X. O.; Huang, B.; Wilson, N. P.; Seyler, K. L.; Zhu, L.; Taniguchi, T.; Watanabe, K. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218.

8

Klein, D. R.; MacNeill, D.; Lado, J. L.; Soriano, D.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Manni, S.; Canfield, P.; Fernández-Rossier, J. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 2018, 360, 1218–1222.

9

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

10

Wang, X.; Tang, J.; Xia, X. X.; He, C. L.; Zhang, J. W.; Liu, Y. Z.; Wan, C. H.; Fang, C.; Guo, C. Y.; Yang, W. L. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 2019, 5, eaaw8904.

11

Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.

12

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

13

Wang, Z.; Gutiérrez-Lezama, I.; Ubrig, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoğlu, A.; Giannini, E.; Morpurgo, A. F. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 2018, 9, 2516.

14

Su, J. W.; Wang, M. S.; Liu, G. H.; Li, H. Q.; Han, J. B.; Zhai, T. Y. Air-stable 2D intrinsic ferromagnetic Ta3FeS6 with four months durability. Adv. Sci. 2020, 7, 2001722.

15

Zhang, Y.; Chu, J. W.; Yin, L.; Shifa, T. A.; Cheng, Z. Z.; Cheng, R. Q.; Wang, F.; Wen, Y.; Zhan, X. Y.; Wang, Z. X. et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 2019, 31, 1900056.

16

Wen, Y.; Liu, Z. H.; Zhang, Y.; Xia, C. X.; Zhai, B. X.; Zhang, X. H.; Zhai, G. H.; Shen, C.; He, P.; Cheng, R. Q. et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 2020, 20, 3130–3139.

17

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

18

Meng, L. J.; Zhou, Z.; Xu, M. Q.; Yang, S. Q.; Si, K. P.; Liu, L. X.; Wang, X. G.; Jiang, H. N.; Li, B. X.; Qin, P. X. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 2021, 12, 809.

19

Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z. W.; Sun, G. Z. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825.

20

May, A. F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z. Y.; Liu, Y. H.; Xu, X. D.; McGuire, M. A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442.

21

Freitas, D. C.; Weht, R.; Sulpice, A.; Remenyi, G.; Strobel, P.; Gay, F.; Marcus, J.; Núñez-Regueiro, M. Ferromagnetism in layered metastable 1T-CrTe2. J. Phys.: Condens. Matter 2015, 27, 176002.

22

Li, H. X.; Wang, L. J.; Chen, J. S.; Yu, T.; Zhou, L.; Qiu, Y.; He, H. T.; Ye, F.; Sou, I. K.; Wang, G. Molecular beam epitaxy grown Cr2Te3 thin films with tunable Curie temperatures for spintronic devices. ACS Appl. Nano Mater. 2019, 2, 6809–6817.

23

Purbawati, A.; Coraux, J.; Vogel, J.; Hadj-Azzem, A.; Wu, N.; Bendiab, N.; Jegouso, D.; Renard, J.; Marty, L.; Bouchiat, V. et al. In-plane magnetic domains and Neel-like domain walls in thin flakes of the room temperature CrTe2 Van der Waals ferromagnet. ACS Appl. Mater. Interfaces 2020, 12, 30702–30710.

24

Zhang, W.; Wong, P. K. J.; Zhu, R.; Wee, A. T. S. Van der Waals magnets: Wonder building blocks for two-dimensional spintronics? InfoMat 2019, 1, 479–495.

25

Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

26

Yang, H.; Wang, F.; Zhang, H. S.; Guo, L. H.; Hu, L. Y.; Wang, L. F.; Xue, D. J.; Xu, X. H. Solution synthesis of layered van der Waals (vdW) ferromagnetic CrGeTe3 nanosheets from a non-vdW Cr2Te3 template. J. Am. Chem. Soc. 2020, 142, 4438–4444.

27

Chu, J. W.; Zhang, Y.; Wen, Y.; Qiao, R. X.; Wu, C. C.; He, P.; Yin, L.; Cheng, R. Q.; Wang, F.; Wang, Z. X. et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 2019, 19, 2154–2161.

28

Fu, Q. D.; Zhu, C.; Zhao, X. X.; Wang, X. L.; Chaturvedi, A.; Zhu, C.; Wang, X. W.; Zeng, Q. S.; Zhou, J. D.; Liu, F. C. et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv. Mater. 2019, 31, 1804945.

29

Polesya, S.; Mankovsky, S.; Benea, D.; Ebert, H.; Bensch, W. Finite-temperature magnetism of CrTe and CrSe. J. Phys. :Condens. Matter 2010, 22, 156002.

30

Gao, P.; Liu, H. J.; Huang, Y. L.; Chu, Y. H.; Ishikawa, R.; Feng, B.; Jiang, Y.; Shibata, N.; Wang, E. G.; Ikuhara, Y. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. Nat. Commun. 2016, 7, 11318.

31

Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A. H.; Ong, N. P. Anomalous hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592.

32

Zhou, L.; Chen, J. S.; Du, Z. Z.; He, X. S.; Ye, B. C.; Guo, G. P.; Lu, H. Z.; Wang, G.; He, H. T. Magnetotransport properties of Cr1−δTe thin films with strong perpendicular magnetic anisotropy. AIP Adv. 2017, 7, 125116.

33

Yue, D.; Jin, X. F. Towards a better understanding of the anomalous hall effect. J. Phys. Soc. Jpn. 2017, 86, 011006.

34

Keskin, V.; Aktaş, B.; Schmalhorst, J.; Reiss, G.; Zhang, H.; Weischenberg, J.; Mokrousov, Y. Temperature and Co thickness dependent sign change of the anomalous Hall effect in Co/Pd multilayers: An experimental and theoretical study. Appl. Phys. Lett. 2013, 102, 022416.

35

Zhao, D. P.; Zhang, L. G.; Malik, I. A.; Liao, M. H.; Cui, W. Q.; Cai, X. Q.; Zheng, C.; Li, L. X.; Hu, X. P.; Zhang, D. et al. Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films. Nano Res. 2018, 11, 3116–3121.

36

Roy, A.; Guchhait, S.; Dey, R.; Pramanik, T.; Hsieh, C. C.; Rai, A.; Banerjee, S. K. Perpendicular magnetic anisotropy and spin glass-like behavior in molecular beam epitaxy grown chromium telluride thin films. ACS Nano 2015, 9, 3772–3779.

File
12274_2021_3909_MOESM1_ESM.pdf (685.2 KB)
Publication history
Copyright

Publication history

Received: 18 August 2021
Revised: 13 September 2021
Accepted: 26 September 2021
Published: 22 October 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return