Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Monolayer boron-based materials are of current interests due to its polymorphism. Herein, motivated by the recent experimental synthesis of semiconducting hydrogenated αʹ-borophene and the regulation of the physical properties in layered materials by surface functionalization, we study the thermal and electronic properties of αʹ-borophene with three different types of gas functional groups (H, F, and Cl) based on first-principles and Boltzmann transport theory. It is found that αʹ-borophene can be well stabilized by fluorination and chlorination and maintain the semiconductor nature. More interestingly, when hydrogen is replaced with fluorine or chlorine, the lattice thermal conductivity changes from 24.3 to 5.2 or 0.73 W/(m·K) along armchair direction at 300 K, exhibiting a huge reduction by two orders of magnitude. The main reason is the decrease of both phonon group velocities and acoustic phonon relaxation time resulting from the strong phonon mode softening due to the weaken B–B bond strength and heavier atomic mass of fluorine and chlorine. Consequently, the chlorinated αʹ-borophene exhibits a high thermoelectric figure of merit ~ 2 at 300 K along armchair direction. Our study illustrates the importance of the modulation of transport properties by gas functional groups, which may promote the thermoelectric application of boron-based materials.
Li, D. F.; Gao, J. F.; Cheng, P.; He, J.; Yin, Y.; Hu, Y. X.; Chen, L.; Cheng, Y.; Zhao, J. J. 2D boron sheets: Structure, growth, and electronic and thermal transport properties. Adv. Funct. Mater. 2020, 30, 1904349.
Wu, X. J.; Dai, J.; Zhao, Y.; Zhuo, Z. W.; Yang, J. L.; Zeng, X. C. Two-dimensional boron monolayer sheets. ACS Nano 2012, 6, 7443–7453.
Penev, E. S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 2012, 12, 2441–2445.
Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.
Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.
Wu, R. T.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49.
Liu, X. L.; Zhang, Z. H.; Wang, L. Q.; Yakobson, B. I.; Hersam, M. C. Intermixing and periodic self-assembly of borophene line defects. Nat. Mater. 2018, 17, 783–788.
Liu, X. L.; Li, Q. C.; Ruan, Q. T.; Rahn, M. S.; Yakobson, B. I.; Hersam, M. C. Borophene synthesis beyond the single-atomic-layer limit. Nat. Mater. 2021.
Zhang, Z. H.; Yang, Y.; Penev, E. S.; Yakobson, B. I. Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 2017, 27, 1605059.
Penev, E. S.; Kutana, A.; Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 2016, 16, 2522–2526.
Zhou, H. B.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Superior lattice thermal conductance of single-layer borophene. npj 2D Mater. Appl. 2017, 1, 14.
Yin, Y.; Hu, Y. X.; Feng, C. B.; Li, S. C.; Li, B. L.; Li, D. F. Strongly anisotropic thermal conductivity in planar hexagonal borophene oxide sheet. Phys. Lett. A 2020, 384, 126457.
Yin, Y.; Li, D. F.; Hu, Y. X.; Ding, G. Q.; Zhou, H. B.; Zhang, G. Phonon stability and phonon transport of graphene-like borophene. Nanotechnology 2020, 31, 315709.
Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.
Barboza, A. P. M.; Guimaraes, M. H. D.; Massote, D. V. P.; Campos, L. C.; Neto, N. M. B.; Cancado, L. G.; Lacerda, R. G.; Chacham, H.; Mazzoni, M. S. C.; Neves, B. R. A. Room-temperature compression-induced diamondization of few-layer graphene. Adv. Mater. 2011, 23, 3014–3017.
Ribas, M. A.; Singh, A. K.; Sorokin, P. B.; Yakobson, B. I. Patterning nanoroads and quantum dots on fluorinated graphene. Nano Res. 2011, 4, 143–152.
Bakharev, P. V.; Huang, M.; Saxena, M.; Lee, S. W.; Joo, S. H.; Park, S. O.; Dong, J. C.; Camacho-Mojica, D. C.; Jin, S.; Kwon, Y. et al. Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat. Nanotechnol. 2020, 15, 59–66.
Xu, L. C.; Du, A. J.; Kou, L. Z. Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity. Phys. Chem. Chem. Phys. 2016, 18, 27284–27289.
Shahrokhi, M. Can fluorine and chlorine functionalization stabilize the graphene like borophene? Comput. Mater. Sci. 2019, 156, 56–66.
Honari, N.; Tabatabaei, S. M.; Pourfath, M.; Fathipour, M. Semiconducting phase and anisotropic properties in borophene via chemical surface functionalization. J. Phys. Chem. C 2020, 124, 5807–5816.
Nishino, H.; Fujita, T.; Cuong, N. T.; Tominaka, S.; Miyauchi, M.; Iimura, S.; Hirata, A.; Umezawa, N.; Okada, S.; Nishibori, E. et al. Formation and characterization of hydrogen boride sheets derived from MgB2 by cation exchange. J. Am. Chem. Soc. 2017, 139, 13761–13769.
Li, Q. C.; Kolluru, V. S. C.; Rahn, M. S.; Schwenker, E.; Li, S. W.; Hennig, R. G.; Darancet, P.; Chan, M. K. Y.; Hersam, M. C. Synthesis of borophane polymorphs through hydrogenation of borophene. Science 2021, 371, 1143–1148.
Kawamura, R.; Cuong, N. T.; Fujita, T.; Ishibiki, R.; Hirabayashi, T.; Yamaguchi, A.; Matsuda, I.; Okada, S.; Kondo, T.; Miyauchi, M. Photoinduced hydrogen release from hydrogen boride sheets. Nat. Commun. 2019, 10, 4880.
Fujino, A.; Ito, S. I.; Goto, T.; Ishibiki, R.; Kondo, J. N.; Fujitani, T.; Nakamura, J.; Hosono, H.; Kondo, T. Hydrogenated borophene shows catalytic activity as solid acid. ACS Omega 2019, 4, 14100–14104.
Xiang, P.; Chen, X. F.; Xiao, B. B.; Wang, Z. M. Highly flexible hydrogen boride monolayers as potassium-ion battery anodes for wearable electronics. ACS Appl. Mater. Interfaces 2019, 11, 8115–8125.
Li, D. F.; He, J.; Ding, G. Q.; Tang, Q. Q.; Ying, Y.; He, J. J.; Zhong, C. Y.; Liu, Y.; Feng, C. B.; Sun, Q. L. et al. Stretch-driven increase in ultrahigh thermal conductance of hydrogenated borophene and dimensionality crossover in phonon transmission. Adv. Funct. Mater. 2018, 28, 1801685.
He, J.; Li, D. F.; Ying, Y.; Feng, C. B.; He, J. J.; Zhong, C. Y.; Zhou, H. B.; Zhou, P.; Zhang, G. Orbitally driven giant thermal conductance associated with abnormal strain dependence in hydrogenated graphene-like borophene. npj Comput. Mater. 2019, 5, 47.
Mortazavi, B.; Makaremi, M.; Shahrokhi, M.; Raeisi, M.; Singh, C. V.; Rabczuk, T.; Pereira, L. F. C. Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties. Nanoscale 2018, 10, 3759–3768.
Hou, C.; Tai, G. A.; Hao, J. Q.; Sheng, L. H.; Liu, B.; Wu, Z. T. Ultrastable crystalline semiconducting hydrogenated borophene. Angew. Chem., Int. Ed. 2020, 59, 10819–10825.
Ren, W. J.; Ouyang, Y. L.; Jiang, P. F.; Yu, C. Q.; He, J.; Chen, J. The impact of interlayer rotation on thermal transport across graphene/hexagonal boron nitride van der waals heterostructure. Nano Lett. 2021, 21, 2634–2641.
Zhang, Z. W.; Ouyang, Y. L.; Cheng, Y.; Chen, J.; Li, N. B.; Zhang, G. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. 2020, 860, 1–26.
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.
Li, W.; Carrete, J.; Katcho, N. A.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747–1758.
Ren, W. J.; Zhang, Z. W.; Chen, C. C.; Ouyang, Y. L.; Li, N. B.; Chen, J. Phononic thermal transport in yttrium hydrides allotropes. Front. Mater. 2020, 7, 569090.
He, J.; Ouyang, Y. L.; Yu, C. Q.; Jiang, P. F.; Ren, W. J.; Chen, J. Lattice thermal conductivity of β12 and χ3 borophene. Chin. Phys. B 2020, 29, 126503.
Hu, Y.; Yin, Y.; Ding, G.; Liu, J.; Zhou, H.; Feng, W.; Zhang, G.; Li, D. High thermal conductivity in covalently bonded bi-layer honeycomb boron arsenide. Mater. Today Phys. 2021, 17, 100346.
Hu, Y. X.; Yin, Y.; Li, S. C.; Zhou, H. B.; Li, D. F.; Zhang, G. Three-fold enhancement of in-plane thermal conductivity of borophene through metallic atom intercalation. Nano Lett. 2020, 20, 7619–7626.
Batsanov, S. S. Van der waals radii of elements. Inorg. Mater. 2001, 37, 871–885.
Madsen, G. K. H.; Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67–71.
Ouyang, Y. L.; Zhang, Z. W.; Li, D. F.; Chen, J.; Zhang, G. Emerging theory, materials, and screening methods: New opportunities for promoting thermoelectric performance. Ann. Phys. 2019, 531, 1800437.
Zhong, C. Y.; Wu, W. K.; He, J. J.; Ding, G. Q.; Liu, Y.; Li, D. F.; Yang, S. A.; Zhang, G. Two-dimensional honeycomb borophene oxide: Strong anisotropy and nodal loop transformation. Nanoscale 2019, 11, 2468–2475.
Ding, G. Q.; Wang, C.; Gao, G. Y.; Yao, K. L.; Dun, C. C.; Feng, C. B.; Li, D. F.; Zhang, G. Engineering of charge carriers via a two-dimensional heterostructure to enhance the thermoelectric figure of merit. Nanoscale 2018, 10, 7077–7084.
Yang, J. H.; Song, S. R.; Du, S. X.; Gao, H. J.; Yakobson, B. I. Design of two-dimensional graphene-like dirac materials β12-XBeB5 (X = H, F, Cl) from non-graphene-like β12-borophene. J. Phys. Chem. Lett. 2017, 8, 4594–4599.
Bardeen, J.; Shockley, W. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 1950, 80, 72–80.
Liu, X.; Feldman, J. L.; Cahill, D. G.; Crandall, R. S.; Bernstein, N.; Photiadis, D. M.; Mehl, M. J.; Papaconstantopoulos, D. A. High thermal conductivity of a hydrogenated amorphous silicon film. Phys. Rev. Lett. 2009, 102, 035901.
Cahill, D. G.; Pohl, R. O. Thermal properties of a tetrahedrally bonded amorphous solid: CdGeAs2. Phys. Rev. B 1988, 37, 8773–8780.
Zhou, W. X.; Cheng, Y.; Chen, K. Q.; Xie, G. F.; Wang, T.; Zhang, G. Thermal conductivity of amorphous materials. Adv. Funct. Mater. 2020, 30, 1903829.
Li, T. W.; Nie, G.; Sun, Q. Highly sensitive tuning of lattice thermal conductivity of graphene-like borophene by fluorination and chlorination. Nano Res. 2020, 13, 1171–1177.
Qiu, B.; Ruan, X. L. Molecular dynamics simulations of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials. Phys. Rev. B 2009, 80, 165203.
Tian, Z. T.; Garg, J.; Esfarjani, K.; Shiga, T.; Shiomi, J.; Chen, G. Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations. Phys. Rev. B 2012, 85, 184303.
Lindsay, L.; Broido, D. A.; Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 2010, 82, 115427.
Zhu, L. Y.; Zhang, T. T. Suppressed thermal conductivity in fluorinated diamane: Optical phonon dominant thermal transport. Appl. Phys. Lett. 2019, 115, 151904.
Ouyang, Y. L.; Zhang, Z. W.; Yu, C. Q.; He, J. J; Yan, G.; Chen, J. Accuracy of machine learning potential for predictions of multiple-target physical properties. Chin. Phys. Lett. 2020, 37, 126301.
Li, W.; Carrete, J.; Madsen, G. K. H.; Mingo, N. Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity. Phys. Rev. B 2016, 93, 205203.
Li, C. W.; Ma, J.; Cao, H. B.; May, A. F.; Abernathy, D. L.; Ehlers, G.; Hoffmann, C.; Wang, X.; Hong, T.; Huq, A. et al. Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics. Phys. Rev. B 2014, 90, 214303.
Zhang, Y.; Ke, X. Z.; Kent, P. R. C.; Yang, J. H.; Chen, C. F. Anomalous lattice dynamics near the ferroelectric instability in PbTe. Phys. Rev. Lett. 2011, 107, 175503.