Journal Home > Volume 15 , Issue 4

Due to the exciting photoelectric properties, better stability, and environmental-friendly nature, all-inorganic halide perovskites (AIHPs), especially the lead-free perovskites, have attracted worldwide attention. However, the film quality of AIHPs fabricated by typical spin-coating and subsequent high-temperature annealing is still not satisfactory, restricting their further development. Herein, we demonstrate a simple low-temperature solution-processed drop-casting method to achieve highly-crystalline cubic CsPbBr3 and lead-free layer-structured Cs3Sb2I9 microcrystals (MCs). This drop-casting technique not only consumes the less amount of precursor solution but also eliminates the high-temperature annealing as compared with those of spin coating. When these MCs are configured into photodetectors, they exhibit superior device performance, which is in distinct contrast to the one of spin-coated counterparts. Specifically, the responsivity of CsPbBr3 MCs is found to be as large as 8,990 mA/W, being 13 times larger than the spin-coated films and even better than many state-of-the-art solution-processed AIHPs devices. This device performance enhancement is attributed to the better film quality and phase purity obtained by the drop-casting method. All these results can evidently fill the “technology gap” for further enhancing the material quality of solution-processed AIHPs and breaking down the barriers that hinder the development of AIHPs based optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct drop-casting synthesis of all-inorganic lead and lead-free halide perovskite microcrystals for high-performance photodetectors

Show Author's information Zhengxun Lai1You Meng1Fei Wang1,2,3Xiuming Bu1Wei Wang1,3Pengshan Xie1Weijun Wang1Chuntai Liu4SenPo Yip1,5Johnny C. Ho1,3,5( )
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021, China
State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong 999077, China
Key Laboratory of Advanced Materials Processing & Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450002, China
Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 816–8580, Japan

Abstract

Due to the exciting photoelectric properties, better stability, and environmental-friendly nature, all-inorganic halide perovskites (AIHPs), especially the lead-free perovskites, have attracted worldwide attention. However, the film quality of AIHPs fabricated by typical spin-coating and subsequent high-temperature annealing is still not satisfactory, restricting their further development. Herein, we demonstrate a simple low-temperature solution-processed drop-casting method to achieve highly-crystalline cubic CsPbBr3 and lead-free layer-structured Cs3Sb2I9 microcrystals (MCs). This drop-casting technique not only consumes the less amount of precursor solution but also eliminates the high-temperature annealing as compared with those of spin coating. When these MCs are configured into photodetectors, they exhibit superior device performance, which is in distinct contrast to the one of spin-coated counterparts. Specifically, the responsivity of CsPbBr3 MCs is found to be as large as 8,990 mA/W, being 13 times larger than the spin-coated films and even better than many state-of-the-art solution-processed AIHPs devices. This device performance enhancement is attributed to the better film quality and phase purity obtained by the drop-casting method. All these results can evidently fill the “technology gap” for further enhancing the material quality of solution-processed AIHPs and breaking down the barriers that hinder the development of AIHPs based optoelectronic devices.

Keywords: photodetector, CsPbBr3, drop-casting, Cs3Sb2I9, halide perovskite

References(43)

1

Hu, J.; Oswald, I. W. H.; Stuard, S. J.; Nahid, M. M.; Zhou, N. H.; Williams, O. F.; Guo, Z. K.; Yan, L.; Hu, H. M.; Chen, Z. et al. Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nat. Commun. 2019, 10, 1276.

2

Xiong, J.; Dai, Z. J.; Zhan, S. P.; Zhang, X. W.; Xue, X. G.; Liu, W. Z.; Zhang, Z. L.; Huang, Y.; Dai, Q. L.; Zhang, J. Multifunctional passivation strategy based on tetraoctylammonium bromide for efficient inverted perovskite solar cells. Nano Energy 2021, 84, 105882.

3

Kim, Y. H.; Kim, S.; Kakekhani, A.; Park, J.; Park, J.; Lee, Y. H.; Xu, H. X.; Nagane, S.; Wexler, R. B.; Kim, D. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 2021, 15, 148–155.

4

Sun, B.; Xu, Y.; Chen, Y. H.; Huang, W. Two-dimensional ruddlesden-popper layered perovskite for light-emitting diodes. APL Mater. 2020, 8, 040901.

5

Zhu, T.; Yang, Y. R.; Zheng, L. Y.; Liu, L.; Becker, M. L.; Gong, X. Solution-processed flexible broadband photodetectors with solution-processed transparent polymeric electrode. Adv. Funct. Mater. 2020, 30, 1909487.

6

Lai, Z. X.; Meng, Y.; Zhu, Q.; Wang, F.; Bu, X. M.; Li, F. Z.; Wang, W.; Liu, C. T.; Wang, F.; Ho, J. C. High-performance flexible self-powered photodetectors utilizing spontaneous electron and hole separation in quasi-2D halide perovskites. Small 2021, 17, 2100442.

7

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

8

Xing, G. C.; Wu, B.; Wu, X. Y.; Li, M. J.; Du, B.; Wei, Q.; Guo, J.; Yeow, E. K. L.; Sum, T. C.; Huang, W. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 2017, 8, 14558.

9

Guo, J.; Liu, T. H.; Li, M. J.; Liang, C.; Wang, K. Y.; Hong, G.; Tang, Y. X.; Long, G. K.; Yu, S. F.; Lee, T. W. et al. Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. Nat. Commun. 2020, 11, 3361.

10

Ali, N.; Rauf, S.; Kong, W.; Ali, S.; Wang, X. Y.; Khesro, A.; Yang, C. P.; Zhu, B.; Wu, H. Z. An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites. Renew. Sustain. Energy Rev. 2019, 109, 160–186.

11

Wang, Q.; Ma, M.; Cui, K.; Li, Y.; Wu, X. H. Investigation of electronic band and moisture stability of 2D hybrid perovskite crystals with ethanolamine organic layer. J. Alloys Compd. 2021, 854, 157187.

12

Fu, Q. X.; Tang, X. L.; Huang, B.; Hu, T.; Tan, L. C.; Chen, L.; Chen, Y. W. Recent progress on the long-term stability of perovskite solar cells. Adv. Sci. 2018, 5, 1700387.

13

Vasileiadou, E. S.; Wang, B.; Spanopoulos, I.; Hadar, I.; Navrotsky, A.; Kanatzidis, M. G. Insight on the stability of thick layers in 2D ruddlesden-popper and dion-jacobson lead iodide perovskites. J. Am. Chem. Soc. 2021, 6, 2523–2536.

14

Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.

15

Li, Z. Z.; Zhou, F. G.; Wang, Q.; Ding, L. M.; Jin, Z. W. Approaches for thermodynamically stabilized CsPbI3 solar cells. Nano Energy 2020, 71, 104634.

16

Zhong, Y. G.; Liao, K.; Du, W. N.; Zhu, J. R.; Shang, Q. Y.; Zhou, F.; Wu, X. X.; Sui, X. Y.; Shi, J. W.; Yue, S. et al. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: Toward laser array application. ACS Nano 2020, 14, 15605–15615.

17

Hendriks, K. H.; van Franeker, J. J.; Bruijnaers, B. J.; Anta, J. A.; Wienk, M. M.; Janssen, R. A. J. 2-Methoxyethanol as a new solvent for processing methylammonium lead halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 2346–2354.

18

Zhang, C. Q.; Wang, K.; Wang, Y. L.; Subhani, W. S.; Jiang, X.; Wang, S. M.; Bao, H. X.; Liu, L.; Wan, L.; Liu, S. Z. Low-temperature crystallization of CsPbIBr2 perovskite for high performance solar cells. Sol. RRL 2020, 4, 2000254.

19

Zeng, J. P.; Li, X. M.; Wu, Y.; Yang, D. D.; Sun, Z. G.; Song, Z. H.; Wang, H.; Zeng, H. B. Space-confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit. Adv. Funct. Mater. 2018, 28, 1804394.

20

Huang, D. W.; Xie, P. F.; Pan, Z. X.; Rao, H. S.; Zhong, X. H. One-step solution deposition of CsPbBr3 based on precursor engineering for efficient all-inorganic perovskite solar cells. J. Mater. Chem. A 2019, 7, 22420–22428.

21

Fan, Q. Q.; Biesold-McGee, G. V.; Ma, J. Z.; Xu, Q. N.; Pan, S.; Peng, J.; Lin, Z. Q. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew. Chem., Int. Ed. 2020, 59, 1030–1046.

22

Ghosh, S.; Pradhan, B. Lead-free metal halide perovskite nanocrystals: Challenges, applications, and future aspects. ChemNanoMat 2019, 5, 300–312.

23

Yao, H. H.; Zhou, F. G.; Li, Z. Z.; Ci, Z. P.; Ding, L. M.; Jin, Z. W. Strategies for improving the stability of tin-based perovskite (ASnX3) solar cells. Adv. Sci. 2020, 7, 1903540.

24

Marshall, K. P.; Walker, M.; Walton, R. I.; Hatton, R. A. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 2016, 1, 16178.

25

Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.

26

Zheng, Z.; Hu, Q. S.; Zhou, H. Z.; Luo, P.; Nie, A. M.; Zhu, H. M.; Gan, L.; Zhuge, F. W.; Ma, Y.; Song, H. S. et al. Submillimeter and lead-free Cs3Sb2Br9 perovskite nanoflakes: Inverse temperature crystallization growth and application for ultrasensitive photodetectors. Nanoscale Horiz. 2019, 4, 1372–1379.

27

Szklarz, P.; Jakubas, R.; Gągor, A.; Bator, G.; Cichos, J.; Karbowiak, M. [NH2CHNH2]3Sb2I9: A lead-free and low-toxicity organic-inorganic hybrid ferroelectric based on antimony (III) as a potential semiconducting absorber. Inorg. Chem. Front. 2020, 7, 1780–1789.

28

Saparov, B.; Hong, F.; Sun, J. P.; Duan, H. S.; Meng, W. W.; Cameron, S.; Hill, I. G.; Yan, Y. F.; Mitzi, D. B. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem. Mater. 2015, 27, 5622–5632.

29

Singh, A.; Boopathi, K. M.; Mohapatra, A.; Chen, Y. F.; Li, G.; Chu, C. W. Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9. ACS Appl. Mater. Interfaces 2018, 10, 2566–2573.

30

Chonamada, T. D.; Dey, A. B.; Santra, P. K. Degradation studies of Cs3Sb2I9: A lead-free perovskite. ACS Appl. Energy Mater. 2020, 3, 47–55.

31

Zhou, H.; Zeng, J. P.; Song, Z. N.; Grice, C. R.; Chen, C.; Song, Z. H.; Zhao, D. W.; Wang, H.; Yan, Y. F. Self-powered all-inorganic perovskite microcrystal photodetectors with high detectivity. J. Phys. Chem. Lett. 2018, 9, 2043–2048.

32
Shil, S. K.; Wang, F.; Lai, Z. X.; Meng, Y.; Wang, Y. P.; Zhao, D. X.; Hossain, M. K.; Egbo, K. O.; Wang, Y.; Yu, K. M. et al. Crystalline all-inorganic lead-free Cs3Sb2I9 perovskite microplates with ultra-fast photoconductive response and robust thermal stability. Nano Res. 2014, 14, 4116−4124.https://doi.org/10.1007/s12274-021-3351-x
DOI
33

Zhang, Y. X.; Liu, Y. C.; Xu, Z.; Yang, Z.; Liu, S. Z. 2D perovskite single crystals with suppressed ion migration for high-performance planar-type photodetectors. Small 2020, 16, 2003145.

34

Liu, Y. C.; Ye, H. C.; Zhang, Y. X.; Zhao, K.; Yang, Z.; Yuan, Y. B.; Wu, H. D.; Zhao, G. T.; Yang, Z. P.; Tang, J. et al. Surface-tension-controlled crystallization for high-quality 2D perovskite single crystals for ultrahigh photodetection. Matter 2019, 1, 465–480.

35

Meng, Y.; Lan, C. Y.; Li, F. Z.; Yip, S.; Wei, R. J.; Kang, X. L.; Bu, X. M.; Dong, R. T.; Zhang, H.; Ho, J. C. Direct vapor-liquid-solid synthesis of all-inorganic perovskite nanowires for high-performance electronics and optoelectronics. ACS Nano 2019, 13, 6060–6070.

36

Li, W. G.; Wang, X. D.; Liao, J. F.; Jiang, Y.; Kuang, D. B. Enhanced on-off ratio photodetectors based on lead-free Cs3Bi2I9 single crystal thin films. Adv. Funct. Mater. 2020, 30, 1909701.

37

Zhang, Z. X.; Li, C.; Lu, Y.; Tong, X. W.; Liang, F. X.; Zhao, X. Y.; Wu, D.; Xie, C.; Luo, L. B. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. J. Phys. Chem. Lett. 2019, 10, 5343–5350.

38

Liu, D.; Yu, B. B.; Liao, M.; Jin, Z. X.; Zhou, L.; Zhang, X. X.; Wang, F. Y.; He, H. T.; Gatti, T.; He, Z. B. Self-powered and broadband lead-free inorganic perovskite photodetector with high stability. ACS Appl. Mater. Interfaces 2020, 12, 30530–30537.

39

Tian, C. C.; Wang, F.; Wang, Y. P.; Yang, Z.; Chen, X. J.; Mei, J. J.; Liu, H. Z.; Zhao, D. X. Chemical vapor deposition method grown all-inorganic perovskite microcrystals for self-powered photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 15804–15812.

40

Li, Y.; Shi, Z. F.; Lei, L. Z.; Zhang, F.; Ma, Z. Z.; Wu, D.; Xu, T. T.; Tian, Y. T.; Zhang, Y. T.; Du, G. T. et al. Highly stable perovskite photodetector based on vapor-processed micrometer-scale CsPbBr3 microplatelets. Chem. Mater. 2018, 30, 6744–6755.

41

Tong, G. Q.; Jiang, M. W.; Son, D. Y.; Ono, L. K.; Qi, Y. B. 2D derivative phase induced growth of 3D all inorganic perovskite micro-nanowire array based photodetectors. Adv. Funct. Mater. 2020, 30, 2002526.

42

Zhang, T.; Li, S. B. Self-powered all-inorganic perovskite photodetectors with fast response speed. Nanoscale Res. Lett. 2021, 16, 6.

43

Wang, M.; Tian, W.; Cao, F. R.; Wang, M.; Li, L. Flexible and self-powered lateral photodetector based on inorganic perovskite CsPbI3-CsPbBr3 heterojunction nanowire array. Adv. Funct. Mater. 2020, 30, 909771.

File
12274_2021_3907_MOESM1_ESM.pdf (724.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 July 2021
Revised: 15 September 2021
Accepted: 26 September 2021
Published: 10 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We acknowledge the General Research Fund (No. CityU 11306520) and the Theme based Research (No. T42-103/16-N) of the Research Grants Council of Hong Kong, China, and the Foshan Innovative and Entrepreneurial Research Team Program (No. 2018IT100031).

Return