Journal Home > Volume 15 , Issue 4

The formation of chemical bonds between metal ions and their supports is an effective strategy to achieve good catalytic activity. However, both the synthesis of active metal species on a support and control of their coordination environment are still challenging. Here, we show the use of an organic compound to produce tubular carbon nitride (TCN) as a support for Pd nanoparticles (NPs), creating a composite material (NP-Pd-TCN). It was found that Pd ions preferentially bind with the electron-rich N atoms of TCN, leading to strong metal–support interactions that benefit charge transfer from g-C3N4 to Pd. X-ray absorption spectroscopy further revealed that the metal–support interactions resulted in the formation of Pd–N bonds, which are responsible for the improvement in the charge dynamics as evidenced by the results from various techniques including photoluminescence (PL) spectroscopy, photocurrent measurements, and electrochemical impedance spectroscopy (EIS). Owing to the good dynamical properties, NP-Pd-TCN was used for photocatalytic hydrogen evolution under visible-light irradiation (λ > 420 nm) and an excellent evolution rate of ~ 381 μmol·h −1 (0.02 g of the photocatalyst) was attained. This work aims to promote a strategy to synthesize efficient photocatalysts for hydrogen production by controllably introducing metal nanoparticles on a support and in the meantime forming chemical bonds to achieve intimate metal-support contact.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Constructing Pd–N interactions in Pd/g-C3N4 to improve the charge dynamics for efficient photocatalytic hydrogen evolution

Show Author's information Xudong Xiao1,§Siying Lin1,§Liping Zhang2( )Huiyuan Meng3Jing Zhou4Qi Li1Jianan Liu1Panzhe Qiao5( )Baojiang Jiang1( )Honggang Fu1( )
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’ s Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
School of Safety Engineering, Heilongjiang University of Science and Technology, Harbin 150080, China
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Chinese Acad Sci, Shanghai Synchrotron Radiat Facil, Shanghai Adv Res Inst, Shanghai 201204, China

§ Xudong Xiao and Siying Lin contributed equally to this work.

Abstract

The formation of chemical bonds between metal ions and their supports is an effective strategy to achieve good catalytic activity. However, both the synthesis of active metal species on a support and control of their coordination environment are still challenging. Here, we show the use of an organic compound to produce tubular carbon nitride (TCN) as a support for Pd nanoparticles (NPs), creating a composite material (NP-Pd-TCN). It was found that Pd ions preferentially bind with the electron-rich N atoms of TCN, leading to strong metal–support interactions that benefit charge transfer from g-C3N4 to Pd. X-ray absorption spectroscopy further revealed that the metal–support interactions resulted in the formation of Pd–N bonds, which are responsible for the improvement in the charge dynamics as evidenced by the results from various techniques including photoluminescence (PL) spectroscopy, photocurrent measurements, and electrochemical impedance spectroscopy (EIS). Owing to the good dynamical properties, NP-Pd-TCN was used for photocatalytic hydrogen evolution under visible-light irradiation (λ > 420 nm) and an excellent evolution rate of ~ 381 μmol·h −1 (0.02 g of the photocatalyst) was attained. This work aims to promote a strategy to synthesize efficient photocatalysts for hydrogen production by controllably introducing metal nanoparticles on a support and in the meantime forming chemical bonds to achieve intimate metal-support contact.

Keywords: carbon nitride, photocatalysis, hydrogen evolution reaction, charge transfer dynamics

References(54)

1

Huang, X. H.; Xia, Y. J.; Cao, Y. J.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Ma, C.; Wang, H. W.; Li, J. J.; You, R. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 2017, 10, 1302–1312.

2

Bing, W.; Chen, Z. W.; Sun, H. J.; Shi, P.; Gao, N.; Ren, J. S.; Qu, X. G. Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res. 2015, 8, 1648–1658.

3

Chiu, Y. H.; Naghadeh, S. B.; Lindley, S. A.; Lai, T. H.; Kuo, M. Y.; Chang, K. D.; Zhang, J. Z.; Hsu, Y. J. Yolk-shell nanostructures as an emerging photocatalyst paradigm for solar hydrogen generation. Nano Energy 2019, 62, 289–298.

4

Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F. et al. Enhancing CO2 electroreduction with the metal-oxide interface. J. Am. Chem. Soc. 2017, 139, 5652–5655.

5

Chen, Z. P.; Mitchell, S.; Vorobyeva, E.; Leary, R. K.; Hauert, R.; Furnival, T.; Ramasse, Q. M.; Thomas, J. M.; Midgley, P. A.; Dontsova, D. et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 2017, 27, 1605785.

6

Long, Y.; Liu, Y. S.; Zhao, Z. M.; Luo, S.; Wu, W.; Wu, L.; Wen, H.; Wang, R. Q.; Ma, J. T. Distinctive morphology effects of porous-spherical/yolk-shell/hollow Pd-nitrogen-doped-carbon spheres catalyst for catalytic reduction of 4-nitrophenol. J. Colloid Interface Sci. 2017, 496, 465–473.

7

Wang, Z. M.; Xu, C. L.; Gao, G. Q.; Li, X. Facile synthesis of well-dispersed Pd-graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv. 2014, 4, 13644–13651.

8

Luo, H.; Liu, Y.; Dimitrov, S. D.; Steier, L.; Guo, S. H.; Li, X. H.; Feng, J. Y.; Xie, F.; Fang, Y. X.; Sapelkin, A. et al. Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. J. Mater. Chem. A 2020, 8, 14690–14696.

9

Bruix, A.; Rodriguez, J. A.; Ramírez, P. J.; Senanayake, S. D.; Evans, J.; Park, J. B.; Stacchiola, D.; Liu, P.; Hrbek, J.; Illas, F. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOX/TiO2(110) catalysts. J. Am. Chem. Soc. 2012, 134, 8968–8974.

10

Dong, Z. P.; Le, X.; Liu, Y. S.; Dong, C. X.; Ma, J. T. Metal organic framework derived magnetic porous carbon composite supported gold and palladium nanoparticles as highly efficient and recyclable catalysts for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. J. Mater. Chem. A 2014, 2, 18775–18785.

11

Zhang, Z. C.; Liu, Y.; Chen, B.; Gong, Y.; Gu, L.; Fan, Z. X.; Yang, N. L.; Lai, Z. C.; Chen, Y.; Wang, J. et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Adv. Mater. 2016, 28, 10282–10286.

12

Zeng, Z. X.; Li, K. X.; Wei, K.; Dai, Y. H.; Yan, L. S.; Guo, H. Q.; Luo, X. B. Fabrication of highly dispersed platinum-deposited porous g-C3N4 by a simple in situ photoreduction strategy and their excellent visible light photocatalytic activity toward aqueous 4-fluorophenol degradation. Chin. J. Catal. 2017, 38, 29–38.

13

Naldoni, A.; D’Arienzo, M.; Altomare, M.; Marelli, M.; Scotti, R.; Morazzoni, F.; Selli, E.; Dal Santo, V. Pt and Au/TiO2 photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photoefficiency. Appl. Catal. B: Environ. 2013, 130–131, 239−248.

14

Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res. 2010, 3, 244–255.

15

Liang, R. W.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water. Nano Res. 2015, 8, 3237–3249.

16

Shang, C. S.; Guo, Y. X.; Wang, E. K. Integration of two-dimensional morphology and porous surfaces to boost methanol electrooxidation performances of PtAg alloy nanomaterials. Nano Res. 2018, 11, 6375–6383.

17

Wu, H.; Fu, Q.; Li, Y. F.; Cui, Y.; Wang, R.; Su, N.; Lin, L.; Dong, A. Y.; Ning, Y. X.; Yang, F. et al. Controlled growth of uniform two-dimensional ZnO overlayers on Au(111) and surface hydroxylation. Nano Res. 2019, 12, 2348–2354.

18

Liu, Y. M.; Tsunoyama, H.; Akita, T.; Tsukuda, T. Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25 clusters on hydroxyapatite. Chem. Commun. 2010, 46, 550–552.

19

Zahmakıran, M.; Román-Leshkov, Y.; Zhang, Y. Rhodium(0) nanoparticles supported on nanocrystalline hydroxyapatite: Highly effective catalytic system for the solvent-free hydrogenation of aromatics at room temperature. Langmuir 2012, 28, 60–64.

20

Tang, H. L.; Liu, F.; Wei, J. K.; Qiao, B. T.; Zhao, K. F.; Su, Y.; Jin, C. Z.; Li, L.; Liu, J. Y.; Wang, J. H. et al. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal-support interaction for carbon monoxide oxidation. Angew. Chem., Int. Ed. 2016, 55, 10606–10611.

21

Shen, Y. J.; Zheng, Q. S.; Liu, J. H.; Tu, T. Metallo-aerogels derived from chitosan with encapsulated metal nanoparticles as robust, efficient and selective nanocatalysts towards reduction of nitroarenes. Nano Res. 2021, 14, 59–65.

22

Rakap, M.; Özkar, S. Hydroxyapatite-supported palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. Int. J. Hydrogen Energy 2011, 36, 7019–7027.

23

Sudhakar, M.; Kantam, M. L.; Jaya, V. S.; Kishore, R.; Ramanujachary, K. V.; Venugopal, A. Hydroxyapatite as a novel support for Ru in the hydrogenation of levulinic acid to γ-valerolactone. Catal. Commun. 2014, 50, 101–104.

24

Katsumata, K. I.; Sakai, K.; Ikeda, K.; Carja, G.; Matsushita, N.; Okada, K. Preparation and photocatalytic reduction of CO2 on noble metal (Pt, Pd, Au) loaded Zn-Cr layered double hydroxides. Mater. Lett. 2013, 107, 138–140.

25

Xia, S. J.; Fang, L.; Meng, Y.; Zhang, X. Q.; Zhang, L. Y.; Yang, C.; Ni, Z. M. Water-gas shift reaction catalyzed by layered double hydroxides supported Au-Ni/Cu/Pt bimetallic alloys. Appl. Catal. B: Environ. 2020, 272, 118949.

26

Fu, S. F.; Zheng, Y.; Zhou, X. B.; Ni, Z. M.; Xia, S. J. Visible light promoted degradation of gaseous volatile organic compounds catalyzed by Au supported layered double hydroxides: Influencing factors, kinetics and mechanism. J. Hazard. Mater. 2019, 363, 41–54.

27

Feng, J. T.; He, Y. F.; Liu, Y. N.; Du, Y. Y.; Li, D. Q. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects. Chem. Soc. Rev. 2015, 44, 5291–5319.

28

Homma, Y.; Liu, H. P.; Takagi, D.; Kobayashi, Y. Single-walled carbon nanotube growth with non-iron-group “catalysts” by chemical vapor deposition. Nano Res. 2009, 2, 793–799.

29

Nie, M.; Shen, P. K.; Wei, Z. D. Nanocrystaline tungsten carbide supported Au-Pd electrocatalyst for oxygen reduction. J. Power Sources 2007, 167, 69–73.

30

Wang, F.; Li, T.; Shi, Y.; Jiao, H. J. Molybdenum carbide supported metal catalysts (Mn/MoxC; M = Co, Ni, Cu, Pd, Pt)-metal and surface dependent structure and stability. Catal. Sci. Technol. 2020, 10, 3029–3046.

31

Wannakao, S.; Artrith, N.; Limtrakul, J.; Kolpak, A. M. Catalytic activity and product selectivity trends for carbon dioxide electroreduction on transition metal-coated tungsten carbides. J. Phys. Chem. C 2017, 121, 20306–20314.

32

Li, X. H.; Wang, X. C.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 2012, 3, 2170–2174.

33

Li, X. H.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott-Schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604.

34

Huang, H. J.; Yang, S. B.; Vajtai, R.; Wang, X.; Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 2014, 26, 5160–5165.

35

Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.

36

Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830–1834.

37

Wu, B. G.; Zhang, L. P.; Jiang, B. J.; Li, Q.; Tian, C. G.; Xie, Y.; Li, W. Z.; Fu, H. G. Ultrathin porous carbon nitride bundles with an adjustable energy band structure toward simultaneous solar photocatalytic water splitting and selective phenylcarbinol oxidation. Angew. Chem., Int. Ed. 2021, 60, 4815–4822.

38

Li, Q.; Zhang, L. M.; Liu, J. A.; Zhou, J.; Jiao, Y. Q.; Xiao, X. D.; Zhao, C.; Zhou, Y.; Ye, S.; Jiang, B. J. et al. Porous carbon nitride thin strip: Precise carbon doping regulating delocalized π-electron induces elevated photocatalytic hydrogen evolution. Small 2021, 17, 2006622.

39

Zhao, C.; Li, Q.; Xie, Y.; Zhang, L. P.; Xiao, X. D.; Wang, D.; Jiao, Y. Q.; Price, C. A. H.; Jiang, B. J.; Liu, J. Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. J. Mater. Chem. A 2020, 8, 305–312.

40

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

41

Li, F. X.; Xiao, X. D.; Zhao, C.; Liu, J. A.; Li, Q.; Guo, C. Y.; Tian, C. G.; Zhang, L. P.; Hu, J. A.; Jiang, B. J. TiO2-on-C3N4 double-shell microtubes: In-situ fabricated heterostructures toward enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2020, 572, 22–30.

42

Xiao, X. D.; Gao, Y. T.; Zhang, L. P.; Zhang, J. C.; Zhang, Q.; Li, Q.; Bao, H. L.; Zhou, J.; Miao, S.; Chen, N. et al. A promoted charge separation/transfer system from Cu single atoms and C3N4 layers for efficient photocatalysis. Adv. Mater. 2020, 32, 2003082.

43

Sun, N.; Zhu, Y. X.; Li, M. W.; Zhang, J.; Qin, J. N.; Li, Y. X.; Wang, C. Y. Thermal coupled photocatalysis over Pt/g-C3N4 for selectively reducing CO2 to CH4 via cooperation of the electronic metal-support interaction effect and the oxidation state of Pt. Appl. Catal. B: Environ. 2021, 298, 120565.

44

Gu, K.; Pan, X. T.; Wang, W. W.; Ma, J. J.; Sun, Y.; Yang, H. L.; Shen, H. Y.; Huang, Z. J.; Liu, H. Y. In situ growth of Pd nanosheets on g-C3N4 nanosheets with well-contacted interface and enhanced catalytic performance for 4-nitrophenol reduction. Small 2018, 14, 1801812.

45

Zhang, L.; Mao, F. X.; Zheng, L. R.; Wang, H. F.; Yang, X. H.; Yang, H. G. Tuning metal catalyst with metal-C3N4 interaction for efficient CO2 electroreduction. ACS Catal. 2018, 8, 11035–11041.

46

Song, Y. X.; Ma, W. Q.; Chen, J. J.; Xu, J.; Mao, Z. Y.; Wang, D. J. Photocatalytic activity of perovskite SrTiO3 catalysts doped with variable rare earth ions. Rare Met. 2021, 40, 1077–1085.

47

Zhu, B. C.; Cheng, B.; Zhang, L. Y.; Yu, J. G. Review on DFT calculation of s-triazine-based carbon nitride. Carbon Energy 2019, 1, 32–56.

48

Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

49

Xiao, X. D.; Zhang, L. P.; Meng, H. Y.; Jiang, B. J.; Fu, H. G. Single metal atom decorated carbon nitride for efficient photocatalysis: Synthesis, structure, and applications. Sol. RRL 2021, 5, 2000609.

50
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, https://doi.org/ 10.1007/s12274-021-3794-0.
51

Cao, S. W.; Low, J.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

52

Sun, H. L.; Guo, X. G.; Facchetti, A. High-performance n-type polymer semiconductors: Applications, recent development, and challenges. Chem 2020, 6, 1310–1326.

53

Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

54

Wang, Y. P.; Liu, L.; Wu, D. J.; Guo, J.; Shi, J. Y.; Liu, J. M.; Su, C. Y. Immobilization of metal-organic molecular cage on g-C3N4 semiconductor for enhancement of photocatalytic H2 generation. Chin. J. Catal. 2019, 40, 1198–1204.

File
12274_2021_3905_MOESM1_ESM.pdf (581.4 KB)
Publication history
Copyright

Publication history

Received: 27 August 2021
Revised: 25 September 2021
Accepted: 26 September 2021
Published: 04 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return