Journal Home > Volume 15 , Issue 4

Noble-metal-free surface-enhanced Raman scattering (SERS) substrates have attracted great attention for their abundant sources, good signal uniformity, superior biocompatibility, and high chemical stability. However, the lack of controllable synthesis and fabrication of noble-metal-free substrates with high SERS activity impedes their practical applications. Herein, we propose a general strategy to fabricate a series of planar transition-metal nitride (TMN) SERS chips via an ambient temperature sputtering deposition route. For the first time, tungsten nitride (WN) and tantalum nitride (TaN) are used as SERS materials. These planar TMN chips show remarkable Raman enhancement factors (EFs) with ~ 105 owing to efficient photoinduced charge transfer process between TMN chips and probe molecules. Further, structural engineering of these TMN chips is used to improve their SERS activity. Benefiting from the synergistic effect of charge transfer process and electric field enhancement by constructing a nanocavity structure, the Raman EF of WN nanocavity chips could be greatly improved to ~ 1.29 × 107, which is an order of magnitude higher than that of planar chips. Moreover, we also design the WN/monolayer MoS2 heterostructure chips. With the increase of surface electron density on the upper WN and more exciton resonance transitions in the heterostructure, a ~ 1.94 × 107 level EF and a 5 × 10−10 M level detection limit could be achieved. Our results provide important guidance for the structural design of ultrasensitive noble-metal-free SERS chips.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Structural engineering of transition-metal nitrides for surface-enhanced Raman scattering chips

Show Author's information Leilei LanHaorun YaoGuoqun LiXingce FanMingze LiTeng Qiu( )
School of Physics, Southeast University, Nanjing 211189, China

Abstract

Noble-metal-free surface-enhanced Raman scattering (SERS) substrates have attracted great attention for their abundant sources, good signal uniformity, superior biocompatibility, and high chemical stability. However, the lack of controllable synthesis and fabrication of noble-metal-free substrates with high SERS activity impedes their practical applications. Herein, we propose a general strategy to fabricate a series of planar transition-metal nitride (TMN) SERS chips via an ambient temperature sputtering deposition route. For the first time, tungsten nitride (WN) and tantalum nitride (TaN) are used as SERS materials. These planar TMN chips show remarkable Raman enhancement factors (EFs) with ~ 105 owing to efficient photoinduced charge transfer process between TMN chips and probe molecules. Further, structural engineering of these TMN chips is used to improve their SERS activity. Benefiting from the synergistic effect of charge transfer process and electric field enhancement by constructing a nanocavity structure, the Raman EF of WN nanocavity chips could be greatly improved to ~ 1.29 × 107, which is an order of magnitude higher than that of planar chips. Moreover, we also design the WN/monolayer MoS2 heterostructure chips. With the increase of surface electron density on the upper WN and more exciton resonance transitions in the heterostructure, a ~ 1.94 × 107 level EF and a 5 × 10−10 M level detection limit could be achieved. Our results provide important guidance for the structural design of ultrasensitive noble-metal-free SERS chips.

Keywords: heterostructure, surface-enhanced Raman scattering (SERS), structural engineering, transition-metal nitrides (TMN), nanocavity

References(70)

1

Cialla-May, D.; Zheng, X. S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961.

2

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

3

Wang, X.; Huang, S. C.; Hu, S.; Yan, S.; Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271.

4

Shen, J. L.; Su, J.; Yan, J.; Zhao, B.; Wang, D. F.; Wang, S. Y.; Li, K.; Liu, M. M.; He, Y.; Mathur, S. et al. Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification. Nano Res. 2015, 8, 731–742.

5

Hao, Q.; Li, M. Z.; Wang, J. W.; Fan, X. C.; Jiang, J.; Wang, X. X.; Zhu, M. S.; Qiu, T.; Ma, L. B.; Chu, P. K. et al. Flexible surface-enhanced Raman scattering chip: A universal platform for real-time interfacial molecular analysis with femtomolar sensitivity. ACS Appl. Mater. Interfaces 2020, 12, 54174–54180.

6

Langer, J.; de Aberasturi, D. J.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.

7

Alessandri, I.; Lombardi, J. R. Enhanced Raman scattering with dielectrics. Chem. Rev. 2016, 116, 14921–14981.

8

Lan, L. L.; Gao, Y. M.; Fan, X. C.; Li, M. Z.; Hao, Q.; Qiu, T. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys. 2021, 16, 43300.

9

Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.

10

Xu, J. T.; Li, X. T.; Wang, Y. X.; Guo. R. H.; Shang S. M.; Jiang, S. X. Flexible and reusable cap-like thin Fe2O3 film for SERS applications. Nano Res. 2019, 12, 381–388.

11

Song, G.; Gong, W. B.; Cong, S.; Zhao, Z. G. Ultrathin two-dimensional nanostructures: Surface defects for morphology-driven enhanced semiconductor SERS. Angew. Chem., Int. Ed. 2021, 60, 5505–5511.

12

Wang, X. T.; Shi, W. X.; Wang, S. X.; Zhao, H. W.; Lin, J.; Yang, Z.; Chen, M.; Guo, L. Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J. Am. Chem. Soc. 2019, 141, 5856–5862.

13

Fan, X. C.; Li, M. Z.; Hao, Q.; Zhu, M. S.; Hou, X. Y.; Huang, H.; Ma, L. B.; Schmidt, O. G.; Qiu, T. High SERS sensitivity enabled by synergistically enhanced photoinduced charge transfer in amorphous nonstoichiometric semiconducting films. Adv. Mater. Interfaces 2019, 6, 1901133.

14

Wang, X. T.; Shi, W. X.; Jin, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem., Int. Ed. 2017, 56, 9851–9855.

15

Zheng, X. L.; Guo, H. L.; Xu, Y.; Zhang, J. L.; Wang, L. Z. Improving SERS sensitivity of TiO2 by utilizing the heterogeneity of facet-potentials. J. Mater. Chem. C 2020, 8, 13836–13842.

16

Lin, J.; Hao, W.; Shang, Y.; Wang, X. T.; Qiu, D. L.; Ma, G. S.; Chen, C.; Li, S. Z.; Guo, L. Direct experimental observation of facet-dependent SERS of Cu2O polyhedra. Small 2018, 14, 1703274.

17

Lin, J.; Shang, Y.; Li, X. X.; Yu, J.; Wang, X. T.; Guo, L. Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv. Mater. 2017, 29, 1604797.

18

Yang, L. L.; Peng, Y. S.; Yang, Y.; Liu, J. J.; Huang, H. L.; Yu, B. H.; Zhao, J. M.; Lu, Y. L.; Huang, Z. R.; Li, Z. Y. et al. A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Adv. Sci. 2019, 6, 1900310.

19

Lee, Y.; Kim, H.; Lee, J.; Yu, S. H.; Hwang, E.; Lee C.; Ahn, J. H.; Cho, J. H. Enhanced Raman scattering of rhodamine 6G films on two-dimensional transition metal dichalcogenides correlated to photoinduced charge transfer. Chem. Mater. 2016, 28, 180–187.

20

Miao, P.; Qin, J. K.; Shen, Y. F.; Su, H. M.; Dai, J. F.; Song, B.; Du, Y. C.; Sun, M. T.; Zhang, W.; Wang, H. L. et al. Unraveling the Raman enhancement mechanism on 1T'-phase ReS2 nanosheets. Small 2018, 14, 1704079.

21

Li, M. Z.; Gao, Y. M.; Fan, X. C.; Wei, Y. J.; Hao, Q.; Qiu, T. Origin of layer-dependent SERS tunability in 2D transition metal dichalcogenides. Nanoscale Horiz. 2021, 6, 186–191.

22

Lee, Y.; Kim, H.; Lee, J. B.; Cho, J. H.; Ahn, J. H. Pressure-induced chemical enhancement in Raman scattering from graphene-rhodamine 6G-graphene sandwich structures. Carbon 2015, 89, 318–327.

23

Sun, H. H.; Yao, M. G.; Liu, S.; Song, Y. P.; Shen, F. R.; Dong, J. J.; Yao, Z.; Zhao, B.; Liu, B. B. SERS selective enhancement on monolayer MoS2 enabled by a pressure-induced shift from resonance to charge transfer. ACS Appl. Mater. Interfaces 2021, 13, 26551–26560.

24

Hou, X. Y.; Zhang, X. Y.; Ma, Q. W.; Tang, X.; Hao, Q.; Cheng, Y. C.; Qiu, T. Alloy engineering in few-layer manganese phosphorus trichalcogenides for surface-enhanced Raman scattering. Adv. Funct. Mater. 2020, 30, 1910171.

25

Zheng, Z. H.; Cong, S.; Gong, W. B.; Xuan, J. N.; Li, G. H.; Lu, W. B.; Geng, F. X.; Zhao, Z. G. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 2017, 8, 1993.

26

Cong, S.; Yuan, Y. Y.; Chen, Z. G.; Hou, J. Y.; Yang, M.; Su, Y. L.; Zhang, Y. Y.; Li, L.; Li, Q. W.; Geng, F. X. et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 2015, 6, 7800.

27

Lan, L. L.; Hou, X. Y.; Gao, Y. M.; Fan, X. C.; Qiu, T. Inkjet-printed paper-based semiconducting substrates for surface-enhanced Raman spectroscopy. Nanotechnology 2020, 31, 055502.

28

Ling, X.; Fang, W. J.; Lee, Y. H.; Araujo, P. T.; Zhang, X.; Rodriguez-Nieva, J. F.; Lin, Y. X.; Zhang, J.; Kong, J.; Dresselhaus, M. S. Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2. Nano Lett. 2014, 14, 3033–3040.

29

Kannan, P. K.; Shankar, P.; Blackman, C.; Chung, C. H. Recent advances in 2D inorganic nanomaterials for SERS Sensing. Adv. Mater. 2019, 31, 1803432.

30

Demirel, G.; Gieseking, R. L. M.; Ozdemir, R.; Kahmann, S.; Loi, M. A.; Schatz, G. C.; Facchetti, A.; Usta, H. Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity. Nat. Commun. 2019, 10, 5502.

31

Yilmaz, M.; Babur, E.; Ozdemir, M.; Gieseking, R. L.; Dede, Y.; Tamer, U.; Schatz, G. C.; Facchetti, A.; Usta, H.; Demirel, G. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nat. Mater. 2017, 16, 918–924.

32

Sun, H. Z.; Cong, S.; Zheng, Z. H.; Wang, Z.; Chen, Z. G.; Zhao, Z. G. Metal-organic frameworks as surface enhanced Raman scattering substrates with high tailorability. J. Am. Chem. Soc. 2019, 141, 870–878.

33

Su, X. Y.; Ma, H.; Wang, H.; Li, X. L.; Han, X. X.; Zhao, B. Surface-enhanced Raman scattering on organic-inorganic hybrid perovskites. Chem. Commun. 2018, 54, 2134–2137.

34

Fan, X. C.; Hao, Q.; Qiu, T.; Chu, P. K. Improving the performance of light-emitting diodes via plasmonic-based strategies. J. Appl. Phys. 2020, 127, 040901.

35

Agrawal, A.; Cho, S. H.; Zandi, O.; Ghosh, S.; Johns, R. W.; Milliron, D. J. Localized surface plasmon resonance in semiconductor nanocrystals. Chem. Rev. 2018, 118, 3121–3207.

36

Li, P.; Zhu, L.; Ma, C.; Zhang, L. X.; Guo, L.; Liu, Y. W.; Ma, H.; Zhao, B. Plasmonic molybdenum tungsten oxide hybrid with surface-enhanced Raman scattering comparable to that of noble metals. ACS Appl. Mater. Interfaces 2020, 12, 19153–19160.

37

Hou, X. Y.; Luo, X. G.; Fan, X. C.; Peng, Z. H.; Qiu, T. Plasmon-coupled charge transfer in WO3−x semiconductor nanoarrays: Toward highly uniform silver-comparable SERS platforms. Phys. Chem. Chem. Phys. 2019, 21, 2611–2618.

38

Liu, W.; Bai, H.; Li, X. S.; Li, W. T.; Zhai, J. F.; Li, J. F.; Xi, G. C. Improved surface-enhanced Raman spectroscopy sensitivity on metallic tungsten oxide by the synergistic effect of surface Plasmon resonance coupling and charge transfer. J. Phys. Chem. Lett. 2018, 9, 4096–4100.

39

Tan, X. J.; Wang, L. Z.; Cheng, C.; Yan, X. F.; Shen, B.; Zhang, J. L. Plasmonic MoO3−x@MoO3 nanosheets for highly sensitive SERS detection through nanoshell-isolated electromagnetic enhancement. Chem. Commun. 2016, 52, 2893–2896.

40

Lan, L. L.; Fan, X. C.; Gao, Y. M.; Li, G. Q.; Hao, Q.; Qiu, T. Plasmonic metal carbide SERS chips. J. Mater. Chem. C 2020, 8, 14523–14530.

41

Ye, Y. T.; Yi, W. C.; Liu, W.; Zhou, Y.; Bai, H.; Li, J. F.; Xi, G. C. Remarkable surface-enhanced Raman scattering of highly crystalline monolayer Ti3C2 nanosheets. Sci. China Mater. 2020, 63, 794–805.

42

Zhong, Y.; Xia, X. H.; Shi, F.; Zhan, J. Y.; Tu, J. P.; Fan, H. J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286.

43

Huang, W. C.; Gao, Y.; Wang, J. X.; Ding, P. C.; Yan, M.; Wu, F. M.; Liu, J.; Liu, D. Q.; Guo, C. S.; Yang, B. et al. Plasmonic enhanced reactive oxygen species activation on low-work-function tungsten nitride for direct near-infrared driven photocatalysis. Small 2020, 16, 2004557.

44

Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

45

Hao, Q.; Li, W.; Xu, H. Y.; Wang, J. W.; Yin, Y.; Wang, H. Y.; Ma, L. B.; Ma, F.; Jiang, X. C.; Schmidt, O. G. et al. VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications. Adv. Mater. 2018, 30, 1705421.

46

Guan, H. M.; Yi, W. C.; Li, T.; Li, Y. H.; Li, J. F.; Bai, H.; Xi G. C. Low temperature synthesis of plasmonic molybdenum nitride nanosheets for surface enhanced Raman scattering. Nat. Commun. 2020, 11, 3889.

47

Soundiraraju, B.; George, B. K. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 2017, 11, 8892–8900.

48

Guan, H. M.; Li, W. T.; Han, J.; Yi, W. C.; Bai, H.; Kong, Q. H.; Xi, G. C. General molten-salt route to three-dimensional porous transition metal nitrides as sensitive and stable Raman substrates. Nat. Commun. 2021, 12, 1376.

49

Esmaeilzadeh, M.; Dizajghorbani-Aghdam, H.; Malekfar, R. Surface-enhanced Raman scattering of methylene blue on titanium nitride nanoparticles synthesized by laser ablation in organic solvents. Spectrochim. Acta A:Mol. Biomol. Spectrosc. 2021, 257, 119721.

50

Du, R. F.; Yi, W. C.; Li, W. T.; Yang, H. F.; Bai, H.; Li, J. F.; Xi, G. C. Quasi-metal microwave route to MoN and Mo2C ultrafine nanocrystalline hollow spheres as surface-enhanced Raman scattering substrates. ACS Nano 2020, 14, 13718–13726.

51

Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2018, 5, 1700603.

52

Karaballi, R. A.; Humagain, G.; Fleischman, B. R. A.; Dasog, M. Synthesis of plasmonic group-4 nitride nanocrystals by solid-state metathesis. Angew. Chem., Int. Ed. 2019, 58, 3147–3150.

53

Yang, X. B.; Aydin, E.; Xu, H.; Kang, J. X.; Hedhili, M.; Liu, W. Z.; Wan, Y. M.; Peng, J.; Samundsett, C.; Cuevas, A. et al. Tantalum nitride electron-selective contact for crystalline silicon solar cells. Adv. Energy Mater. 2018, 8, 1800608.

54

Kim, G. T.; Park, T. K.; Chung, H.; Kim, Y. T.; Kwon, M. H.; Choi, J. G. Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: I. XPS study of Mo-based compounds. Appl. Surf. Sci. 1999, 152, 35–43.

55

Joy, V. T.; Srinivasan, T. K. K. Fourier-transform surface-enhanced Raman scattering study on thiourea and some substituted thioureas adsorbed on chemically deposited silver films. Spectrochim. Acta A:Mol. Biomol. Spectrosc. 1999, 55, 2899–2909.

56

Song, X. J.; Wang, Y.; Zhao, F.; Li, Q. C.; Ta, H. Q.; Rümmeli, M. H.; Tully, C. G.; Li, Z. Z.; Yin, W. J.; Yang, L. T. et al. Plasmon-free surface-enhanced Raman spectroscopy using metallic 2D materials. ACS Nano 2019, 13, 8312–8319.

57

Tao, L.; Chen, K.; Chen, Z. F.; Cong, C. X.; Qiu, C. Y.; Chen, J. J.; Wang, X. M.; Chen, H. J.; Yu, T.; Xie, W. G. et al. 1T′ transition metal telluride atomic layers for plasmon-free SERS at femtomolar levels. J. Am. Chem. Soc. 2018, 140, 8696–8704.

58

Hu, Y. M.; Li, J. Y.; Chen, N. Y.; Chen, C. Y.; Han, T. C.; Yu, C. C. Effect of sputtering power on crystallinity, intrinsic defects, and optical and electrical properties of Al-doped ZnO transparent conducting thin films for optoelectronic devices. J. Appl. Phys. 2017, 121, 085302.

59

Tsetseris, L.; Kalfagiannis, N.; Logothetidis, S.; Pantelides, S. T. Structure and interaction of point defects in transition-metal nitrides. Phys. Rev. B 2007, 76, 224107.

60

Tsetseris, L.; Kalfagiannis, N.; Logothetidis, S.; Pantelides, S. T. Trapping and release of impurities in TiN: A first-principles study. Phys. Rev. B 2008, 78, 094111.

61

Pei, C. R.; Deng, L. J.; Xiang, C. J.; Zhang, S.; Sun, D. Effect of the varied nitrogen vacancy concentration on mechanical and electrical properties of ZrNx thin films. Thin Solid Films 2019, 683, 57–66.

62

Yu, J.; Yang, M. S.; Li, Z.; Liu, C. D.; Wei, Y. S.; Zhang, C.; Man, B. Y.; Lei, F. C. Hierarchical particle-in-quasicavity architecture for ultratrace in situ Raman sensing and its application in real-time monitoring of toxic pollutants. Anal. Chem. 2020, 92, 14754–14761.

63

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

64

Cañamares, M. V.; Chenal, C.; Birke, R. L.; Lombardi, J. R. DFT, SERS, and single-molecule SERS of crystal violet. J. Phys. Chem. C 2008, 112, 20295–20300.

65

Zong, C.; Chen, C. J.; Wang, X.; Hu, P.; Liu, G. K.; Ren, B. Single-molecule level rare events revealed by dynamic surface-enhanced Raman spectroscopy. Anal. Chem. 2020, 92, 15806–15810.

66

Chen, C. J.; Zong, C.; Liu, G. K.; Ren, B. Adsorption behavior of rhodamine 6G on silver surfaces studied by electrochemical surface-enhanced Raman spectroscopy. J. Electrochem. 2016, 22, 32–36.

67

Muehlethaler, C.; Considine, C. R.; Menon, V; Lin, W. C.; Lee, Y. H.; Lombardi, J. R. Ultrahigh Raman enhancement on monolayer MoS2. ACS Photonics 2016, 3, 1164–1169.

68

Zheng, W. H.; Zheng, B. Y.; Yan, C. L.; Liu, Y.; Sun, X. X.; Qi, Z. Y.; Yang, T. F.; Jiang, Y.; Huang, W.; Fan, P. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 2019, 6, 1802204.

69

Li, M. Z.; Fan, X. C.; Gao, Y. M.; Qiu, T. W18O49/monolayer MoS2 heterojunction-enhanced Raman scattering. J. Phys. Chem. Lett. 2019, 10, 4038–4044.

70

Yin, Y.; Miao, P.; Zhang, Y. M.; Han, J. C.; Zhang, X. H.; Gong, Y.; Gu, L.; Xu, C. Y.; Yao, T.; Xu, P. et al. Significantly increased Raman enhancement on MoX2 (X = S, Se) monolayers upon phase Transition. Adv. Funct. Mater. 2017, 27, 1606694.

File
12274_2021_3904_MOESM1_ESM.pdf (867.2 KB)
Publication history
Copyright

Publication history

Received: 21 August 2021
Revised: 19 September 2021
Accepted: 24 September 2021
Published: 09 November 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return