Journal Home > Volume 15 , Issue 4

The electrocatalytic reduction of CO2 to HCOOH (ERC-HCOOH) is one of the most feasible ways to alleviate energy crisis and solve environmental problems. Nevertheless, it remains a challenge for ERC-HCOOH to maintain excellent activity and selectivity in a wide potential window. Herein, ultra-thin flower-like Bi2O2CO3 nanosheets (NSs) with abundant Bi-O structures were in situ synthesized on carbon paper via topological transformation and post-processing. Faraday efficiency of HCOOH (FEHCOOH) reached 90% in a wide potential window (−1.5 to −1.8 V vs. Ag/AgCl). Significantly, excellent FEHCOOH (90%) and current density (47 mA·cm−2) were achieved at −1.8 V vs. Ag/AgCl. The X-ray absorption fine structure (XAFS) combined with density functional theory (DFT) calculation demonstrated that the excellent performance of Bi2O2CO3 NS was attributed to the abundant Bi-O structures, which was conducive to enhancing the adsorption of CO2* and OCHO* intermediates and can effectively inhibit hydrogen evolution. The excellent performance of Bi2O2CO3 NS over a wide potential window could provide new insights for the efficient electrocatalytic conversion of CO2.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Sub-2 nm ultra-thin Bi2O2CO3 nanosheets with abundant Bi-O structures toward formic acid electrosynthesis over a wide potential window

Show Author's information Yuhong Wang1,2,§Bin Wang3,§Wenjun Jiang1( )Zailun Liu1Jiangwei Zhang3,4( )Lizhen Gao2( )Wei Yao1( )
Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, 104 Youyi Road, Beijing 100094, China
College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, China

§ Yuhong Wang and Bin Wang contributed equally to this work.

Abstract

The electrocatalytic reduction of CO2 to HCOOH (ERC-HCOOH) is one of the most feasible ways to alleviate energy crisis and solve environmental problems. Nevertheless, it remains a challenge for ERC-HCOOH to maintain excellent activity and selectivity in a wide potential window. Herein, ultra-thin flower-like Bi2O2CO3 nanosheets (NSs) with abundant Bi-O structures were in situ synthesized on carbon paper via topological transformation and post-processing. Faraday efficiency of HCOOH (FEHCOOH) reached 90% in a wide potential window (−1.5 to −1.8 V vs. Ag/AgCl). Significantly, excellent FEHCOOH (90%) and current density (47 mA·cm−2) were achieved at −1.8 V vs. Ag/AgCl. The X-ray absorption fine structure (XAFS) combined with density functional theory (DFT) calculation demonstrated that the excellent performance of Bi2O2CO3 NS was attributed to the abundant Bi-O structures, which was conducive to enhancing the adsorption of CO2* and OCHO* intermediates and can effectively inhibit hydrogen evolution. The excellent performance of Bi2O2CO3 NS over a wide potential window could provide new insights for the efficient electrocatalytic conversion of CO2.

Keywords: CO2 reduction , Bi2O2CO3 nanosheets , Bi-O structures, X-ray absorption fine structure, wide potential window

References(57)

1

Peh, S. B.; Zhao, D. Tying amines down for stable CO2 capture. Science 2020, 369, 372–373.

2

Wang, D.; Xie, Z. H.; Porosoff, M. D.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics. Chem 2021, 7, 2277–2311.

3

Zhao, Q.; Zhang, C.; Hu, R. M.; Du, Z. G.; Gu, J. N.; Cui, Y. L. S.; Chen, X.; Xu, W. J.; Cheng, Z. J.; Li, S. M. et al. Selective etching quaternary MAX phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano 2021, 15, 4927–4936.

4

Wang, P. T.; Yang, H.; Xu, Y.; Huang, X. Q.; Wang, J.; Zhong, M.; Cheng, T.; Shao, Q. Synergized Cu/Pb core/shell electrocatalyst for high-efficiency CO2 reduction to C2+ liquids. ACS Nano 2021, 15, 1039–1047.

5

Xiao, C. L.; Zhang, J. Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: A review. ACS Nano 2021, 15, 7975–8000.

6

Kou, M. P.; Liu, W.; Wang, Y. Y.; Huang, J. D.; Chen, Y. L.; Zhou, Y.; Chen, Y.; Ma, M. Z.; Lei, K.; Xie, H. Q. et al. Photocatalytic CO2 conversion over single-atom MoN2 sites of covalent organic framework. Appl. Catal. B Environ. 2021, 291, 120146.

7

Chen, J. Y.; Wang, T. T.; Li, Z. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Feng, P. Y.; Hou, Y. Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. Nano Res. 2021, 14, 3188–3207.

8

Jiang, S. Y.; Liu, J. X.; Zhao, K.; Cui, D. D.; Liu, P. R.; Yin, H. J.; Al-Mamun, M.; Lowe, S. E.; Zhang, W. P.; Zhong, Y. L. et al. Ru(bpy)32+-sensitized {001} facets LiCoO2 nanosheets catalyzed CO2 reduction reaction with 100% carbonaceous products. Nano Res. 2021.

9

Lombardo, L.; Ko, Y.; Zhao, K.; Yang, H.; Züttel, A. Direct CO2 capture and reduction to high-end chemicals with tetraalkylammonium borohydrides. Angew. Chem., Int. Ed. 2021, 60, 9580–9589.

10

Liu, C. H.; Wu, Y.; Sun, K. A.; Fang, J. J.; Huang, A. J.; Pan, Y.; Cheong, W. C.; Zhuang, Z. W.; Zhuang, Z. B.; Yuan, Q. H. et al. Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. Chem 2021, 7, 1297–1307.

11

Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

12

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

13

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

14

Chen, S. H.; Wang, B. Q.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhang, Z. D.; Liang, X.; Zheng, L. R.; Zhou, L.; Su, Y. Q. et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation. Nano Lett. 2021, 21, 7325–7331.

15

Chen, X. Y.; Chen, J. F.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R. X.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 2021, 4, 20–27.

16

Zhang, W. J.; Yang, S. Y.; Jiang, M. H.; Hu, Y.; Hu, C. Q.; Zhang, X. L.; Jin, Z. Nanocapillarity and nanoconfinement effects of pipet-like bismuth@carbon nanotubes for highly efficient electrocatalytic CO2 reduction. Nano Lett. 2021, 21, 2650–2657.

17

Duan, Y. X.; Zhou, Y. T.; Yu, Z.; Liu, D. X.; Wen, Z.; Yan, J. M.; Jiang, Q. Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew. Chem., Int. Ed. 2021, 60, 8798–8802.

18

Liu, H. F.; Xia, J.; Zhang, N.; Cheng, H.; Bi, W. T.; Zu, X. L.; Chu, W. S.; Wu, H. A.; Wu, C. Z.; Xie, Y. Solid-liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nat. Catal. 2021, 4, 202–211.

19

Zhang, Q.; Yu, J. H.; Corma, A. Applications of zeolites to C1 chemistry: Recent advances, challenges, and opportunities. Adv. Mater. 2020, 32, 2002927.

20

Chang, J. F.; Feng, L. G.; Liu, C. P.; Xing, W.; Hu, X. L. An effective Pd-Ni2P/C anode catalyst for direct formic acid fuel cells. Angew. Chem., Int. Ed. 2014, 53, 122–126.

21

Gong, Q. F.; Ding, P.; Xu, M. Q.; Zhu, X. R.; Wang, M. Y.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J. et al. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 2019, 10, 2807.

22

Lamagni, P.; Miola, M.; Catalano, J.; Hvid, M. S.; Mamakhel, M. A. H.; Christensen, M.; Madsen, M. R.; Jeppesen, H. S.; Hu, X. M.; Daasbjerg, K. et al. Restructuring Metal-organic frameworks to nanoscale bismuth electrocatalysts for highly active and selective CO2 reduction to formate. Adv. Funct. Mater. 2020, 30, 1910408.

23

Yang, Q.; Wu, Q. L.; Liu, Y.; Luo, S. P.; Wu, X. T.; Zhao, X. X.; Zou, H. Y.; Long, B. H.; Chen, W.; Liao, Y. J. et al. Novel Bi-doped amorphous SnOx nanoshells for efficient electrochemical CO2 reduction into formate at low overpotentials. Adv. Mater. 2020, 32, 2002822.

24

Zhou, Y.; Zhou, R.; Zhu, X. R.; Han, N.; Song, B.; Liu, T. C.; Hu, G. Z.; Li, Y. F.; Lu, J.; Li, Y. G. Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate. Adv. Mater. 2020, 32, 2000992.

25

Gao, D. F.; Zhou, H.; Cai, F.; Wang, D. N.; Hu, Y. F.; Jiang, B.; Cai, W. B.; Chen, X. Q.; Si, R.; Yang, F. et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 2017, 10, 2181–2191.

26

Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

27

Lu, P. L.; Tan, X.; Zhao, H. T.; Xiang, Q.; Liu, K. L.; Zhao, X. X.; Yin, X. M.; Li, X. Z.; Hai, X.; Xi, S. B. et al. Atomically dispersed indium sites for selective CO2 electroreduction to formic acid. ACS Nano 2021, 15, 5671–5678.

28

Wei, B.; Xiong, Y. S.; Zhang, Z. Y.; Hao, J. H.; Li, L. H.; Shi, W. D. Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet. Appl. Catal. B Environ. 2021, 283, 119646.

29

Zhang, B. H.; Chen, S.; Wulan, B. R.; Zhang, J. T. Surface modification of SnO2 nanosheets via ultrathin N-doped carbon layers for improving CO2 electrocatalytic reduction. Chem. Eng. J. 2021, 421, 130003.

30

Wu, J.; Bai, X.; Ren, Z. Y.; Du, S. C.; Song, Z.; Zhao, L.; Liu, B. W.; Wang, G. L.; Fu, H. G. Multivalent Sn species synergistically favours the CO2-into-HCOOH conversion. Nano Res. 2021, 14, 1053–1060.

31

Choi, S. Y.; Yoon, S. H.; Kang, U.; Han, D. S.; Park, H. Standalone photoconversion of CO2 using Ti and TiOX-sandwiched heterojunction photocatalyst of CuO and CuFeO2 films. Appl. Catal. B Environ. 2021, 288, 119985.

32

Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.

33

Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 9, 1320.

34

Wu, D.; Wang, X. W.; Fu, X. Z.; Luo, J. L. Ultrasmall Bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction. Appl. Catal. B Environ. 2021, 284, 119723.

35

Tran-Phu, T.; Daiyan, R.; Fusco, Z.; Ma, Z. P.; Amal, R.; Tricoli, A. Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate. Adv. Funct. Mater. 2020, 30, 1906478.

36

Zhang, Y.; Li, F. W.; Zhang, X. L.; Williams, T.; Easton, C. D.; Bond, A. M.; Zhang, J. Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. J. Mater. Chem. A 2018, 6, 4714–4720.

37

He, S. S.; Ni, F. L.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Bai, H. P.; Liu, G. J.; Zhang, Y.; Li, Y. Y.; Zhang, B. et al. The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem., Int. Ed. 2018, 130, 16346–16351.

38

Wang, Y. T.; Li, Y. H.; Liu, J. Z.; Dong, C. X.; Xiao, C. Q.; Cheng, L.; Jiang, H. L.; Jiang, H.; Li, C. Z. BiPO4-derived 2D nanosheets for efficient electrocatalytic reduction of CO2 to liquid fuel. Angew. Chem., Int. Ed. 2021, 60, 7681–7685.

39

Ma, W. X.; Bu, J.; Liu, Z. P.; Yan, C.; Yao, Y.; Chang, N. H.; Zhang, H. P.; Wang, T.; Zhang, J. Monoclinic scheelite bismuth vanadate derived bismuthene nanosheets with rapid kinetics for electrochemically reducing carbon dioxide to formate. Adv. Funct. Mater. 2021, 31, 2006704.

40

Tang, S. F.; Lu, X. L.; Zhang, C.; Wei, Z. W.; Si, R.; Lu, T. B. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate. Sci. Bull. 2021, 66, 1533–1541.

41

Su, P. P.; Xu, W. B.; Qiu, Y. L.; Zhang, T. T.; Li, X. F.; Zhang, H. M. Ultrathin bismuth nanosheets as a highly efficient CO2 reduction electrocatalyst. ChemSusChem 2018, 11, 848–853.

42

Yang, J.; Wang, X. L.; Qu, Y. T.; Wang, X.; Huo, H.; Fan, Q. K.; Wang, J.; Yang, L. M.; Wu, Y. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 2020, 10, 2001709.

43

Deng, P. L.; Wang, H. M.; Qi, R. J.; Zhu, J. X.; Chen, S. H.; Yang, F.; Zhou, L.; Qi, K.; Liu, H. F.; Xia, B. Y. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2020, 10, 743–750.

44

Li, L.; Ma, D. K.; Qi, F. X. Y.; Chen, W.; Huang, S. M. Bi nanoparticles/Bi2O3 nanosheets with abundant grain boundaries for efficient electrocatalytic CO2 reduction. Electrochim. Acta 2019, 298, 580–586.

45

Chen, Z. P.; Mou, K. W.; Wang, X. H.; Liu, L. C. Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem., Int. Ed. 2018, 57, 12790–12794.

46

Tian, J. J.; Wang, R. Y.; Shen, M.; Ma, X.; Yao, H. L.; Hua, Z. L.; Zhang, L. X. Bi-Sn oxides for highly selective co2 electroreduction to formate in a wide potential window. ChemSusChem 2021, 14, 2247–2254.

47

Liu, S.; Lu, X. F.; Xiao, J.; Wang, X.; Lou, X. W. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem., Int. Ed. 2019, 58, 13828–13833.

48

Zhang, Y.; Zhang, X. L.; Ling, Y. Z.; Li, F. W.; Bond, A. M.; Zhang, J. Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance. Angew. Chem., Int. Ed. 2018, 57, 13283–13287.

49

An, X. W.; Li, S. S.; Hao, X. Q.; Du, X.; Yu, T.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. The in situ morphology transformation of bismuth-based catalysts for the effective electroreduction of carbon dioxide. Sustainable Energy Fuels 2020, 4, 2831–2840.

50

Yu, L. H.; Zhang, X. Y.; Li, G. W.; Cao, Y. T.; Shao, Y.; Li, D. Z. Highly efficient Bi2O2CO3/BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light. Appl. Catal. B Environ. 2016, 187, 301–309.

51

Hu, R. P.; Xiao, X.; Tu, S. H.; Zuo, X. X.; Nan, J. M. Synthesis of flower-like heterostructured β-Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and its visible-light-induced photocatalytic degradation of o-phenylphenol. Appl. Catal. B Environ. 2015, 163, 510–519.

52

Zhang, Q. T.; Xu, B.; Yuan, S. S.; Zhang, M.; Ohno, T. Improving g-C3N4 photocatalytic performance by hybridizing with Bi2O2CO3 nanosheets. Catal. Today 2017, 284, 27–36.

53

Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Zhao, P. Y.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Ma, J.; Liu, J. et al. Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy 2018, 53, 808–816.

54

Fan, K.; Jia, Y. F.; Ji, Y. F.; Kuang, P. Y.; Zhu, B. C.; Liu, X. Y.; Yu, J. G. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal. 2020, 10, 358–364.

55

Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured Tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734–1737.

56

Won, D. H.; Choi, C. H.; Chung, J.; Chung, M. W.; Kim, E. H.; Woo, S. I. Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. ChemSusChem 2015, 8, 3092–3098.

57

Salehi-Khojin, A.; Jhong, H. R. M.; Rosen, B. A.; Zhu, W.; Ma, S. C.; Kenis, P. J. A.; Masel, R. I. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 2013, 117, 1627–1632.

File
12274_2021_3903_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 August 2021
Revised: 16 September 2021
Accepted: 22 September 2021
Published: 23 October 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22002185 and 21701168), Beijing Natural Science Foundation (No. 2204100), the National Key Research and Development Program of China (Nos. 2020YFA0710304 and 2020YFA0406101), Civil Aerospace Technology Research Project (No. B0108), Dalian high level talent innovation project (No. 2019RQ063), and Open project Foundation of State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (No. 20200021). We gratefully acknowledge 1W2B beamline of Beijing Synchrotron Radiation Facility (BSRF) Beijing, China, for providing the beam time.

Return