Journal Home > Volume 15 , Issue 4

Recently, surface-enhanced Raman scattering (SERS) has been successfully used in the non-invasive detection of bladder tumor (BCa). The internal standard method was considered as an effective ratiometric strategy for calibrating signal fluctuation originated from the interference of measurement conditions and samples. However, it is still difficult to detect the target mRNA quantitatively using the current ratiometric SERS nanosensors. In this study, we developed an internal reference based ratiometric SERS assay. Two kinds of molecular beacons (MB) carrying Raman reporter molecules were anchored on sea-urchin-like Au nanoclusters (AuNCs). Thymidine kinase1 (TK1) MBs with hexachlorofluorescein (HEX) were used to capture tumor biomarker TK1 mRNA, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) MBs with 5(6)-carboxyfluorescein (FAM) were used to offer internal standard signals. The internal reference GAPDH MB can reflect the consistent content of the GAPDH mRNA in single cells. The ratiometric method (I745/I645) can more accurately reflect the content of target mRNA in single cells. The ratiometric nanoprobes had excellent stability (coefficient of variation: 0.3%), high sensitivity (detection limit: 3.4 pM), high specificity (capable of single-base mismatch recognition) and ribozyme-resistant stability. Notably, the nanoprobes can effectively distinguish BCa cells from normal cells, and it was easy to contour the single BCa cell using the ratiometric method. By combining asymmetric polymerase chain reaction (PCR) and ratiometric nanoprobes, it was easy to distinguish the SERS ratio (I745/I645) as low concentration as 10−14 M. Further clinical detection in urine samples from patients with BCa confirmed its potential for early noninvasive diagnosis of BCa with the sensitivity of 80% and specificity of 100%, which is superior to the current urine cytological method.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multiplex ratiometric gold nanoprobes based on surface-enhanced Raman scattering enable accurate molecular detection and imaging of bladder cancer

Show Author's information Xiao Liang1,2,§Pu Zhang1,3,§Minghai Ma1,§Tao Yang1Xiangwei Zhao4Rui Zhang1Minxuan Jing1Rundong Song1Lei Wang2( )Jinhai Fan1( )
Department of Urology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
Department of Urology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, China
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China

§ Xiao Liang, Pu Zhang, and Minghai Ma contributed equally to this work.

Abstract

Recently, surface-enhanced Raman scattering (SERS) has been successfully used in the non-invasive detection of bladder tumor (BCa). The internal standard method was considered as an effective ratiometric strategy for calibrating signal fluctuation originated from the interference of measurement conditions and samples. However, it is still difficult to detect the target mRNA quantitatively using the current ratiometric SERS nanosensors. In this study, we developed an internal reference based ratiometric SERS assay. Two kinds of molecular beacons (MB) carrying Raman reporter molecules were anchored on sea-urchin-like Au nanoclusters (AuNCs). Thymidine kinase1 (TK1) MBs with hexachlorofluorescein (HEX) were used to capture tumor biomarker TK1 mRNA, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) MBs with 5(6)-carboxyfluorescein (FAM) were used to offer internal standard signals. The internal reference GAPDH MB can reflect the consistent content of the GAPDH mRNA in single cells. The ratiometric method (I745/I645) can more accurately reflect the content of target mRNA in single cells. The ratiometric nanoprobes had excellent stability (coefficient of variation: 0.3%), high sensitivity (detection limit: 3.4 pM), high specificity (capable of single-base mismatch recognition) and ribozyme-resistant stability. Notably, the nanoprobes can effectively distinguish BCa cells from normal cells, and it was easy to contour the single BCa cell using the ratiometric method. By combining asymmetric polymerase chain reaction (PCR) and ratiometric nanoprobes, it was easy to distinguish the SERS ratio (I745/I645) as low concentration as 10−14 M. Further clinical detection in urine samples from patients with BCa confirmed its potential for early noninvasive diagnosis of BCa with the sensitivity of 80% and specificity of 100%, which is superior to the current urine cytological method.

Keywords: surface-enhanced Raman scattering (SERS), internal reference, bladder cancer, non-invasive detection, SERS imaging

References(48)

1

Burger, M.; Catto, J. W. F.; Dalbagni, G.; Grossman, H. B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L. A.; La Vecchia, C.; Shariat, S. et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 2013, 63, 234–241.

2

Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2018. CA: Cancer J. Clin. 2018, 68, 7–30.

3

Jocham, D.; Stepp, H.; Waidelich, R. Photodynamic diagnosis in urology: State-of-the-art. Eur. Urol. 2008, 53, 1138–1150.

4

Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 2018, 68, 394–424.

5

Biardeau, X.; Lam, O.; Ba, V.; Campeau, L.; Corcos, J. Prospective evaluation of anxiety, pain, and embarrassment associated with cystoscopy and urodynamic testing in clinical practice. Can. Urol. Assoc. J. 2017, 11, 104–110.

6

Burke, D. M.; Shackley, D. C.; O'Reilly, P. H. The community-based morbidity of flexible cystoscopy. BJU Int. 2002, 89, 347–349.

7

Têtu, B. Diagnosis of urothelial carcinoma from urine. Mod. Pathol. 2009, 22 Suppl 2, S53–S59.

8

Lotan, Y.; Roehrborn, C. G. Sensitivity and specificity of commonly available bladder tumor markers versus cytology: Results of a comprehensive literature review and meta-analyses. Urology 2003, 61, 109–118.

9

Raitanen, M. P.; Aine, R.; Rintala, E.; Kallio, J.; Rajala, P.; Juusela, H.; Tammela, T. L. J.; Group, F. Differences between local and review urinary cytology in diagnosis of bladder cancer. An interobserver multicenter analysis. Eur. Urol. 2002, 41, 284–289.

10

Mowatt, G.; Zhu, S.; Kilonzo, M.; Boachie, C.; Fraser, C.; Griffiths, T. R. L.; N'Dow, J.; Nabi, G.; Cook, J.; Vale, L. Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol. Assess. 2010, 14, 1–331.

11

Usuba, W.; Urabe, F.; Yamamoto, Y.; Matsuzaki, J.; Sasaki, H.; Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Kato, K. et al. Circulating miRNA panels for specific and early detection in bladder cancer. Cancer Sci. 2019, 110, 408–419.

12

Dudley, J. C.; Schroers-Martin, J.; Lazzareschi, D. V.; Shi, W. Y.; Chen, S. B.; Esfahani, M. S.; Trivedi, D.; Chabon, J. J.; Chaudhuri, A. A.; Stehr, H. et al. Detection and surveillance of bladder cancer using urine tumor DNA. Cancer Discov. 2019, 9, 500–509.

13
Ma, M. H.; Zhang, P.; Liang, X.; Cui, D. X.; Shao, Q. Y.; Zhang, H. B.; Zhang, M. Z.; Yang, T.; Wang, L.; Zhang, N. et al. R11 peptides can promote the molecular imaging of spherical nucleic acids for bladder cancer margin identification. Nano Res., in press, http://doi.org/10.1007/s12274-021-3807-z.https://doi.org/10.1007/s12274-021-3807-z
DOI
14

Akkilic, N.; Geschwindner, S.; Höök, F. Single-molecule biosensors: Recent advances and applications. Biosens. Bioelectron. 2020, 151, 111944.

15

Pallaoro, A.; Mirsafavi, R. Y.; Culp, W. T. N.; Braun, G. B.; Meinhart, C. D.; Moskovits, M. Screening for canine transitional cell carcinoma (TCC) by SERS-based quantitative urine cytology. Nanomedicine: Nanotechnol., Biol. Med. 2018, 14, 1279–1287.

16

Shao, X. G.; Pan, J. H.; Wang, Y. Q.; Zhu, Y. J.; Xu, F.; Shangguan, X.; Dong, B. J.; Sha, J. J.; Chen, N.; Chen, Z. Y. et al. Evaluation of expressed prostatic secretion and serum using surface-enhanced Raman spectroscopy for the noninvasive detection of prostate cancer, a preliminary study. Nanomedicine: Nanotechnol., Biol. Med. 2017, 13, 1051–1059.

17

Liu, Y. S.; Luo, F. Spatial Raman mapping investigation of SERS performance related to localized surface plasmons. Nano Res. 2020, 13, 138–144.

18

Ngo, H. T.; Wang, H. N.; Fales, A. M.; Vo-Dinh, T. Plasmonic SERS biosensing nanochips for DNA detection. Anal. Bioanal. Chem. 2016, 408, 1773–1781.

19

Kneipp, K.; Kneipp, H.; Kneipp, J. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 2006, 39, 443–450.

20

Pang, Y. F.; Wang, C. G.; Lu, L. C.; Wang, C. W.; Sun, Z. W.; Xiao, R. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens. Bioelectron. 2019, 130, 204–213.

21

Lin, D.; Wu, Q.; Qiu, S. F.; Chen, G. N.; Feng, S. Y.; Chen, R.; Zeng, H. S. Label-free liquid biopsy based on blood circulating DNA detection using SERS-based nanotechnology for nasopharyngeal cancer screening. Nanomedicine: Nanotechnol., Biol. Med. 2019, 22, 102100.

22

Restaino, S. M.; White, I. M. Real-time multiplexed PCR using surface enhanced Raman spectroscopy in a thermoplastic chip. Lab Chip 2018, 18, 832–839.

23

Peng, R. Y.; Si, Y. M.; Deng, T.; Zheng, J.; Li, J. S.; Yang, R. H.; Tan, W. H. A novel SERS nanoprobe for the ratiometric imaging of hydrogen peroxide in living cells. Chem. Commun. 2016, 52, 8553–8556.

24
Liu, W.; Li, W. T.; Li, Y. H.; Li, J. F.; Bai, H.; Zou, M. Q.; Xi, G. C. Determine the position of nanoparticles in cells by using surface-enhanced Raman three-dimensional imaging. Nano Res. 2021, in press, https://doi.org/10.1007/s12274-021-3726-z.
DOI
25

Faulds, K.; Smith, W. E.; Graham, D. Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal. Chem. 2004, 76, 412–417.

26

Fan, S. S.; Cheng, J.; Liu, Y.; Wang, D. F.; Luo, T.; Dai, B.; Zhang, C.; Cui, D. X.; Ke, Y. G.; Song, J. Proximity-induced pattern operations in reconfigurable DNA origami Domino array. J. Am. Chem. Soc. 2020, 142, 14566–14573.

27

Li, Y. E.; Wang, Z.; Mu, X. J.; Ma, A. N.; Guo, S. Raman tags: Novel optical probes for intracellular sensing and imaging. Biotechnol. Adv. 2017, 35, 168–177.

28

Qian, X. M.; Zhou, X.; Nie, S. M. Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J. Am. Chem. Soc. 2008, 130, 14934–14935.

29

Ren, L. J.; Chen, X. X.; Feng, C.; Ding, L.; Liu, X. M.; Chen, T. S.; Zhang, F.; Li, Y. L.; Ma, Z. L.; Tian, B. et al. Visualized and cascade-enhanced gene silencing by smart DNAzyme-graphene nanocomplex. Nano Res. 2020, 13, 2165–2174.

30

Guo, T.; Li, W. M.; Qian, L.; Yan, X. L.; Cui, D. X.; Zhao, J. B.; Ni, H. B.; Zhao, X. W.; Zhang, Z. P.; Li, X. F. et al. Highly-selective detection of EGFR mutation gene in lung cancer based on surface enhanced Raman spectroscopy and asymmetric PCR. J. Pharmaceut. Biomed. Anal. 2020, 190, 113522.

31

Zhang, P.; Zhang, Y. N.; Liu, W. H.; Cui, D. X.; Zhao, X. W.; Song, J.; Guo, T.; Ni, H. B.; Zhang, M. Z.; Zhang, H. B. et al. A molecular beacon based surface-enhanced Raman scattering nanotag for noninvasive diagnosis of bladder cancer. J. Biomed. Nanotechnol. 2019, 15, 1589–1597.

32

Meng, X. Y.; Wang, H. Y.; Chen, N.; Ding, P.; Shi, H. Y.; Zhai, X.; Su, Y. Y.; He, Y. A graphene-silver nanoparticle-silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria. Anal. Chem. 2018, 90, 5646–5653.

33

Zhang, Y.; Yan, Y. R.; Chen, W. H.; Cheng, W.; Li, S. Q.; Ding, X. J.; Li, D. D.; Wang, H.; Ju, H. X.; Ding, S. J. A simple electrochemical biosensor for highly sensitive and specific detection of microRNA based on mismatched catalytic hairpin assembly. Biosens. Bioelectron. 2015, 68, 343–349.

34

He, Y.; Yang, X.; Yuan, R.; Chai, Y. Q. A novel ratiometric SERS biosensor with one Raman probe for ultrasensitive microRNA detection based on DNA hydrogel amplification. J. Mater. Chem. B 2019, 7, 2643–2647.

35

Ke, J. X.; Lu, S.; Li, Z.; Shang, X. Y.; Li, X. J.; Li, R. F.; Tu, D. T.; Chen, Z.; Chen, X. Y. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes. Nano Res. 2020, 13, 1955–1961.

36

Wu, Y.; Xiao, F. B.; Wu, Z. Y.; Yu, R. Q. Novel aptasensor platform based on ratiometric surface-enhanced Raman spectroscopy. Anal. Chem. 2017, 89, 2852–2858.

37

Chen, J. Y.; Wu, Y.; Fu, C. C.; Cao, H. Y.; Tan, X. P.; Shi, W. B.; Wu, Z. Y. Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly. Biosens. Bioelectron. 2019, 143, 111619.

38

Huang, X. L.; Song, J. B.; Yung, B. C.; Huang, X. H.; Xiong, Y. H.; Chen, X. Y. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873–2920.

39

Laing, S.; Gracie, K.; Faulds, K. Multiplex in vitro detection using SERS. Chem. Soc. Rev. 2016, 45, 1901–1918.

40

Prigodich, A. E.; Randeria, P. S.; Briley, W. E.; Kim, N. J.; Daniel, W. L.; Giljohann, D. A.; Mirkin, C. A. Multiplexed nanoflares: mRNA detection in live cells. Anal. Chem. 2012, 84, 2062–2066.

41

Yuan, P. Y.; Mao, X.; Liew, S. S.; Wu, S.; Huang, Y.; Li, L.; Yao, S. Q. Versatile multiplex endogenous RNA detection with simultaneous signal normalization using mesoporous silica nanoquenchers. ACS Appl. Mater. Interfaces 2020, 12, 57695–57709.

42

Yeo, D. C.; Wiraja, C.; Paller, A. S.; Mirkin, C. A.; Xu, C. J. Abnormal scar identification with spherical-nucleic-acid technology. Nat. Biomed. Eng. 2018, 2, 227–238.

43

Ye, S. J.; Li, X. X.; Wang, M. L.; Tang, B. Fluorescence and SERS imaging for the simultaneous absolute quantification of multiple miRNAs in living cells. Anal. Chem. 2017, 89, 5124–5130.

44
Zhang, D.; Huang, L.; Liu, B.; Ge, Q.; Dong, J.; Zhao, X. W. A vertical flow microarray chip based on SERS nanotags for rapid and ultrasensitive quantification of alpha-fetoprotein and carcinoembryonic antigen. Mikrochim.. Acta. 2019, 186, 699.https://doi.org/10.1007/s00604-019-3792-z
DOI
45

Tian, F. R.; Conde, J.; Bao, C. C.; Chen, Y. S.; Curtin, J.; Cui, D. X. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials 2016, 106, 87–97.

46

Wang, L.; Guo, T.; Lu, Q.; Yan, X. L.; Zhong, D. X.; Zhang, Z. P.; Ni, Y. F.; Han, Y.; Cui, D. X.; Li, X. F. et al. Sea-urchin-like Au nanocluster with surface-enhanced Raman scattering in detecting epidermal growth factor receptor (EGFR) mutation status of malignant pleural effusion. ACS Appl. Mater. Interfaces 2015, 7, 359–369.

47

Wang, X. S.; Yang, D. P.; Huang, P.; Li, M.; Li, C.; Chen, D.; Cui, D. X. Hierarchically assembled Au microspheres and sea urchin-like architectures: Formation mechanism and SERS study. Nanoscale 2012, 4, 7766–7772.

48

Li, G. F.; Yao, Y.; Wang, Z.; Zhao, M.; Xu, J. C.; Huang, L. W.; Zhu, G. M.; Bao, G. J.; Sun, W. S.; Hong, L. et al. Switchable skeletal rearrangement of Dihydroisobenzofuran Acetals with Indoles. Org. Lett. 2019, 21, 4313–4317.

File
12274_2021_3902_MOESM1_ESM.pdf (471.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 August 2021
Revised: 19 September 2021
Accepted: 22 September 2021
Published: 20 October 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81901838), the Key Research and Development Plan in Shaanxi Province (Nos. 2020SF-123 and 2020SF-195), the Natural Science Foundation of Zhejiang Province (No. LQ21H160041), and the Medical Research Program of Department of Science and Technology of Xi’an, Shaanxi Province (No. 2019115713YX012SF048(4)). We thank Mengzhao Zhang, Qiuya Shao, Lu Wang and Lu Zhang at Department of Urology, the First Affiliated Hospital, Xi’an Jiaotong University for their support. We also thank Dr. Yu Wang at Instrument Analysis Center of Xi’an Jiaotong University for her assistance.

Return