Journal Home > Volume 15 , Issue 4

Mixed-valence metallic compounds are a class of functional materials with peculiar electrochemical properties. Exploring the correlation between defects and corrosion resistance of mixed-valence metallic compounds is a novel and interesting subject. Through an intelligently designed synergistic process of reduction and directed assembly, not only the directional generation of oxygen vacancies along the normal direction of the (010) crystal plane was achieved, but also the W18O49 mixed-valence metal oxide (MVMO) with a single crystalline phase and an assembled ordered three-dimensional cluster structure of nanorods was obtained. Three attractive effects of oriented oxygen vacancies in W18O49 MVMO were discovered. First, the oxygen vacancy channels realized the directional concentrated transport of oxygen atoms to form dense oxide passivation film. Second, the directional concentrated oxygen vacancies as active centers effectively solved the problem of difficult photoelectron leap and separation of pure-phase semiconductors, realizing photogenerated cathodic protection. Third, the high-energy vacancies endowed the material with antibacterial function, which contributed to the stable existence of the anti-corrosion system. The resistance value of W18O49 MVMO as an anti-corrosion functional material was increased to more than 4.00 times that of the original metal protection layer. The experimental results obtained in this research were of great reference value for revealing the intrinsic mechanism of correlation between oxygen defect orientation of MVMOs and electrochemistry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intelligently assembly of W18O49 nanorod clusters with directionally generated oxygen vacancies and excellent electrochemical properties

Show Author's information Dan ZhouXiaojiao GuoYixiang ChenXiaoyu YuanJinku Liu( )
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

Mixed-valence metallic compounds are a class of functional materials with peculiar electrochemical properties. Exploring the correlation between defects and corrosion resistance of mixed-valence metallic compounds is a novel and interesting subject. Through an intelligently designed synergistic process of reduction and directed assembly, not only the directional generation of oxygen vacancies along the normal direction of the (010) crystal plane was achieved, but also the W18O49 mixed-valence metal oxide (MVMO) with a single crystalline phase and an assembled ordered three-dimensional cluster structure of nanorods was obtained. Three attractive effects of oriented oxygen vacancies in W18O49 MVMO were discovered. First, the oxygen vacancy channels realized the directional concentrated transport of oxygen atoms to form dense oxide passivation film. Second, the directional concentrated oxygen vacancies as active centers effectively solved the problem of difficult photoelectron leap and separation of pure-phase semiconductors, realizing photogenerated cathodic protection. Third, the high-energy vacancies endowed the material with antibacterial function, which contributed to the stable existence of the anti-corrosion system. The resistance value of W18O49 MVMO as an anti-corrosion functional material was increased to more than 4.00 times that of the original metal protection layer. The experimental results obtained in this research were of great reference value for revealing the intrinsic mechanism of correlation between oxygen defect orientation of MVMOs and electrochemistry.

Keywords: oxygen vacancy, electrochemical properties, W18O49, directional generated, mixed-valence metal oxide

References(62)

1

Krasheninnikov, A. V. When defects are not defects. Nat. Mater. 2018, 17, 757–758.

2

Yu, J. Y.; Zhou, W. J.; Xiong, T. L.; Wang, A. L.; Chen, S. W.; Chu, B. L. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Res. 2017, 10, 2599–2609.

3
Xu, X. Z.; Qiao, R. X.; Liang, Z. H.; Zhang, Z. H.; Wang, R.; Zeng, F. K.; Cui, G. L.; Zhang, X. W.; Zou, D. X.; Guo, Y. et al. Towards intrinsically pure graphene grown on copper. Nano Res. 2022, 15, 919−924.
4

Handoko, A. D.; Liew, L. L.; Lin, M.; Sankar, G.; Du, Y. H.; Su, H. B.; Dong, Z. L.; Goh, G. K. L. Elucidation of thermally induced internal porosity in zinc oxide nanorods. Nano Res. 2018, 11, 2412–2423.

5

Ma, H. Y.; Tan, Y. Q.; Liu, Z. F.; Wei, J. H.; Xiong, R. 3D urchin-like CuO modified W18O49 nanostructures for promoted photocatalytic hydrogen evolution under visible light irradiation. Nanomaterials 2021, 11, 104.

6

Ma, D.; Hu, B.; Wu, W. D.; Liu, X.; Zai, J. T.; Shu, C.; Tsega, T. T.; Chen, L. W.; Qian, X. F.; Liu, T. L. Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat. Commun. 2019, 10, 3367.

7

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

8

Xu, S. J.; Li, D.; Wu, P. Y. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2015, 25, 1127–1136.

9

Shen, J. X.; Li, Y. Z.; Zhao, H. Y.; Pan, K.; Li, X.; Qu, Y.; Wang, G. F.; Wang, D. S. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931–1936.

10

Chen, L. X.; He, F.; Huang, Y.; Meng, Y. H.; Guo, R. S. Hydrogenated nanoporous TiO2 film on Ti-25Nb-3Mo-2Sn-3Zr alloy with enhanced photocatalytic and sterilization activities driven by visible light. J. Alloys Compd. 2016, 678, 5–11.

11

Zhang, R. M.; Song, C. J.; Kou, M. P.; Yin, P. Q.; Jin, X. L.; Wang, L.; Deng, Y.; Wang, B.; Xia, D. H.; Wong, P. K. et al. Sterilization of Escherichia coli by photothermal synergy of WO3−x/C nanosheet under infrared light irradiation. Environ. Sci. Technol. 2020, 54, 3691–3701.

12

Cong, S.; Geng, F. X.; Zhao, Z. G. Tungsten oxide materials for optoelectronic applications. Adv. Mater. 2016, 28, 10518–10528.

13

Han, H.; Nayak, A. K.; Choi, H.; Ali, G.; Kwon, J.; Choi, S.; Paik, U.; Song, T. Partial dehydration in hydrated tungsten oxide nanoplates leads to excellent and robust bifunctional oxygen reduction and hydrogen evolution reactions in acidic media. ACS Sustain. Chem. Eng. 2020, 8, 9507–9518.

14

Qi, K.; Wei, J. K.; Sun, M. H.; Huang, Q. M.; Li, X. M.; Xu, Z.; Wang, W. L.; Bai, X. D. Real-time observation of deep lithiation of tungsten oxide nanowires by in situ electron microscopy. Angew. Chem., Int. Ed. 2015, 54, 15222–15225.

15

Zheng, H. D.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar-Zadeh, K. Nanostructured tungsten oxide-properties, synthesis, and applications. Adv. Funct. Mater. 2011, 21, 2175–2196.

16

Lee, K.; Seo, W. S.; Park, J. T. Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 2003, 125, 3408–3409.

17

Li, C.; Gao, B.; Yao, Y.; Guan, X. X.; Shen, X.; Wang, Y. G.; Huang, P.; Liu, L. F.; Liu, X. Y.; Li, J. J. Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. 2017, 29, 1602976.

18

Sun, Y.; Wang, W.; Qin, J. W.; Zhao, D.; Mao, B. G.; Xiao, Y.; Cao, M. H. Oxygen vacancy-rich mesoporous W18O49 nanobelts with ultrahigh initial Coulombic efficiency toward high-performance lithium storage. Electrochim. Acta 2016, 187, 329–339.

19

Wang, D.; Sun, J. B.; Cao, X.; Zhu, Y. H.; Wang, Q. X.; Wang, G. C.; Han, Y.; Lu, G. Y.; Pang, G. S.; Feng, S. H. High-performance gas sensing achieved by mesoporous tungsten oxide mesocrystals with increased oxygen vacancies. J. Mater. Chem. A 2013, 1, 8653–8657.

20

Ulum, M. F.; Caesarendra, W.; Alavi, R.; Hermawan, H. In-vivo corrosion characterization and assessment of absorbable metal implants. Coatings 2019, 9, 282.

21

Thongchaivetcharat, K.; Salaluk, S.; Crespy, D.; Thérien-Aubin, H.; Landfester, K. Responsive colloidosomes with triple function for anticorrosion. ACS Appl. Mater. Interfaces 2020, 12, 42129–42139.

22

Zhu, L. J.; Zhang, Z. H.; Ke, X. X.; Wang, J. Q.; Perepezko, J.; Sui, M. L. WO2 triggered nucleation and growth of ultra-long W18O49 structures, from nanobundles to single-crystalline microrod. Acta Mater. 2018, 148, 55–62.

23

Hai, G. J.; Huang, J. F.; Jie, Y. N.; Cao, L. Y.; Wang, L.; Fu, C. L.; Xiao, T.; Niu, M. F.; Feng, L. L. Unveiling the relationships between (010) facets-orientation growth and photocatalytic activity in W18O49 nanowires. J. Alloys Compd. 2020, 820, 153127.

24

Jiang, Y. K.; Shi, M. Q.; Tong, X.; Chu, Y. Q.; Ma, C. Nanostructure architectures of tungsten carbide for methanol electrooxidation catalyst. Chin. J. Chem. 2016, 34, 624–630.

25

He, K.; Zai, J. T.; Liu, X.; Zhu, Y.; Iqbal, A.; Tadesse Tsega, T.; Zhang, Y. C.; Ali, N.; Qian, X. F. One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-air batteries. Appl. Catal. B Environ. 2020, 265, 118594.

26

Liu, W. J.; Jiang, P. G.; Xiao, Y. Y.; Liu, J. S. A study of the hydrogen adsorption mechanism of W18O49 using first-principles calculations. Comput. Mater. Sci. 2018, 154, 53–59.

27

Gao, R.; Shang, Z. R.; Zheng, L. R.; Wang, J. K.; Sun, L. M.; Hu, Z. B.; Liu, X. F. Enhancing the catalytic activity of Co3O4 nanosheets for Li–O2 batteries by the incoporation of oxygen vacancy with hydrazine hydrate reduction. Inorg. Chem. 2019, 58, 4989–4996.

28

Ju, S.; Yusuf, M.; Jang, S.; Kang, H.; Kim, S.; Park, K. H. Simple transformation of hierarchical hollow structures by reduction of metal-organic frameworks and their catalytic activity in the oxidation of benzyl alcohol. Chem. —Eur. J. 2019, 25, 7852–7859.

29

Scirè, D.; Procel, P.; Gulino, A.; Isabella, O.; Zeman, M.; Crupi, I. Sub-gap defect density characterization of molybdenum oxide: An annealing study for solar cell application. Nano Rea. 2020, 13, 3416–3424.

30

Liu, B.; Wang, Y. Q.; Liu, G. J.; Feng, H. L.; Yang, H. W.; Xue, X. Y.; Sun, J. R. Tuning the magnetic properties of La0.67Sr0.33CoO3−δ films by oxygen pressure. Phys. Rev. B 2016, 93, 094421.

31

Qin, Y. X.; Liu, M.; Hua, D. Y. First-principles study of the electronic structure and NO2-sensing properties of Ti-doped W18O49 nanowire. Acta Phys. Sin. 2014, 63, 207101.

32

Kunyapat, T.; Xu, F.; Neate, N.; Wang, N. N.; De Sanctis, A.; Russo, S.; Zhang, S. W.; Xia, Y. D.; Zhu, Y. Q. Ce-doped bundled ultrafine diameter tungsten oxide nanowires with enhanced electrochromic performance. Nanoscale 2018, 10, 4718–4726.

33

Zhao, Z. H.; Bai, Y.; Ning, W. W.; Fan, J. M.; Gu, Z. Y.; Chang, H. H.; Yin, S. Effect of surfactants on the performance of 3D morphology W18O49 by solvothermal synthesis. Appl. Surf. Sci. 2019, 471, 537–544.

34

Hai, G. J.; Huang, J. F.; Cao, L. Y.; Jie, Y. N.; Li, J. Y.; Wang, X.; Zhang, G. Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. J. Alloys Compd. 2017, 690, 239–248.

35

Chang, Y. H.; Wang, Z. G.; Shi, Y. E.; Ma, X. C.; Ma, L.; Zhang, Y. Q.; Zhan, J. H. Hydrophobic W18O49 mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun. J. Mater. Chem. A 2018, 6, 10939–10946.

36

Pan, D.; Zhang, X. D.; Yang, G.; Shang, Y.; Su, F. M.; Hu, Q.; Patil, R. R.; Liu, H.; Liu, C. T.; Guo, Z. H. Thermally conductive anticorrosive epoxy nanocomposites with tannic acid-modified boron nitride nanosheets. Ind. Eng. Chem. Res. 2020, 59, 20371–20381.

37

Klapper, H. S.; Goellner, J. Electrochemical noise from oxygen reduction on stainless steel surfaces. Corros. Sci. 2009, 51, 144–150.

38

Zhang, R. F.; Qiu, Y.; Qi, Y. S.; Birbilis, N. A closer inspection of a grain boundary immune to intergranular corrosion in a sensitised Al-Mg alloy. Corros. Sci. 2018, 133, 1–5.

39

Asefi, D.; Arami, M.; Sarabi, A. A.; Mahmoodi, N. M. The chain length influence of cationic surfactant and role of nonionic co-surfactants on controlling the corrosion rate of steel in acidic media. Corros. Sci. 2009, 51, 1817–1821.

40

Olugbade, T. Datasets on the corrosion behaviour of nanostructured AISI 316 stainless steel treated by SMAT. Data Br. 2019, 25, 104033.

41

Hajideh, M. R.; Farahani, M.; Pakravan, M.; Shahmirzalo, A. Corrosion resistance and hydrophilic properties of plasma sprayed Ni+5%Al coatings. Heliyon 2019, 5, e01920.

42

Zhang, J. Y.; Zhou, D.; Xue, X. Z.; Liu, J. K. Multistage assembled rubik’s cube-like structure and outstanding anticorrosion performance induced by magnetic metal doping. Chem. Mater. 2018, 30, 7296–7305.

43

Wang, Y.; Ren, P. H.; Feng, C. X.; Zheng, X.; Wang, Z. G.; Li, D. L. Photocatalytic behavior and photo-corrosion of visible-light-active silver carbonate/titanium dioxide. Mater. Lett. 2014, 115, 85–88.

44

Gao, M.; Wang, J. X.; Zhou, Y.; Quan, X. D.; Song, S. S.; Wang, Z.; Zhao, S.; Wang, H. Y. Oxygen vacancy semiconductor: An additive to improve corrosion protective performance significantly. J. Mater. Sci. 2018, 53, 15614–15620.

45

Li, Y.; Zhang, X. G.; Cui, Y. X.; Wang, H. Y.; Wang, J. X. Anti-corrosion enhancement of superhydrophobic coating utilizing oxygen vacancy modified potassium titanate whisker. Chem. Eng. J. 2019, 374, 1326–1336.

46

Joo, M.; Cakmak, M.; Soucek, M. D. Corrosion resistance of self-stratifying coatings using fluorovinyl ether/BPA epoxide. Prog. Org. Coatings 2019, 133, 145–153.

47

Yu, W. W.; Shen, Z. G.; Peng, F.; Lu, Y.; Ge, M. Y.; Fu, X. L.; Sun, Y.; Chen, X.; Dai, N. Improving gas sensing performance by oxygen vacancies in sub-stoichiometric WO3−x. RSC Adv. 2019, 9, 7723–7728.

48

Cheng, F.; Yang, J.; Yan, L.; Zhao, J.; Zhao, H. H.; Song, H. L.; Chou, L. J. Enhancement of La2O3 to Li-Mn/WO3/TiO2 for oxidative coupling of methane. J. Rare Earths 2020, 38, 167–174.

49

Sun, M. M.; Chen, Z. Y.; Bu, Y. Y. Enhanced photoelectrochemical cathodic protection performance of H2O2-treated In2O3 thin-film photoelectrode under visible light. Surf. Coatings Technol. 2015, 266, 79–87.

50

Braun, A.; Akgul, F. A.; Chen, Q. L.; Erat, S.; Huang, T. W.; Jabeen, N.; Liu, Z.; Mun, B. S.; Mao, S. S.; Zhang, X. J. Observation of substrate orientation-dependent oxygen defect filling in thin WO3−δ/TiO2 pulsed laser-deposited films with in situ XPS at high oxygen pressure and temperature. Chem. Mater. 2012, 24, 3473–3480.

51

Zheng, X. D.; Dong, X. X.; Zhang, S. F.; Yang, J. Defect-induced ferromagnetism in W18O49 nanowires. J. Alloys Compd. 2020, 818, 152894.

52

Zheng, X. D.; Ren, F.; Zhang, S. P.; Zhang, X. L.; Wu, H. Y.; Zhang, X. G.; Xing, Z.; Qin, W. J.; Liu, Y.; Jiang, C. Z. A general method for large-scale fabrication of semiconducting oxides with high SERS sensitivity. ACS Appl. Mater. Interfaces 2017, 9, 14534–14544.

53

Zhang, Z. Y.; Huang, J. D.; Fang, Y. R.; Zhang, M. Y.; Liu, K. C.; Dong, B. A nonmetal plasmonic z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv. Mater. 2017, 29, 1606688.

54

Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.

55

Phan, G. T.; Van Pham, D.; Patil, R. A.; Lai, C. C.; Yeh, W. C.; Liou, Y.; Ma, Y. R. Impact of valence-band-edge lifting on the doping-free bandgap tunability of 1D Magnéli-phase W18O49 nanorods. Appl. Mater. Today 2019, 15, 605–613.

56

Kako, T.; Meng, X. G.; Ye, J. H. Solid-base loaded WO3 photocatalyst for decomposition of harmful organics under visible light irradiation. APL Mater. 2015, 3, 104411.

57

Wei, Z.; Wang, W. C.; Li, W. L.; Bai, X. Q.; Zhao, J. F.; Tse, E. C. M.; Phillips, D. L.; Zhu, Y. F. Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew. Chem., Int. Ed. 2021, 60, 8236–8242.

58

He, K.; Tsega, T. T.; Liu, X.; Zai, J. T.; Li, X. H.; Liu, X. J.; Li, W. H.; Ali, N.; Qian, X. F. Utilizing the space-charge region of the FeNi-LDH/CoP p–n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 11903–11909.

59

Fang, L. J.; Huang, J.; Liu, Y.; Zhang, B. T.; Li, H. Cored-wire arc spray fabrication of novel aluminium-copper coatings for anti-corrosion/fouling hybrid performances. Surf. Coatings Technol. 2019, 357, 794–801.

60

Li, X. W.; Shi, T.; Li, B.; Chen, X. C.; Zhang, C. W.; Guo, Z. G.; Zhang, Q. X. Subtractive manufacturing of stable hierarchical micro-nano structures on AA5052 sheet with enhanced water repellence and durable corrosion resistance. Mater. Des. 2019, 183, 108152.

61

Wang, R.; Zhang, W. T.; Zhu, W. X.; Yan, L. Z.; Li, S. H.; Chen, K.; Hu, N.; Suo, Y. R.; Wang, J. L. Enhanced visible-light-driven photocatalytic sterilization of tungsten trioxide by surface-engineering oxygen vacancy and carbon matrix. Chem. Eng. J. 2018, 348, 292–300.

62

Regmi, C.; Kshetri, Y. K.; Kim, T. H.; Pandey, R. P.; Ray, S. K.; Lee, S. W. Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment. Appl. Surf. Sci. 2017, 413, 253–265.

File
12274_2021_3901_MOESM1_ESM.pdf (433.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 August 2021
Revised: 15 September 2021
Accepted: 22 September 2021
Published: 18 December 2021
Issue date: April 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21878090), and Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province (No. 2020CL04).

Return